TY - JOUR AB - Purpose Ultrahigh-speed projectile running in water with the velocity close to the speed of sound usually causes large supercavity. The computation of such transonic cavitating flows is usually difficult, thus high-speed model reflecting the compressibility of both the liquid and the vapor phases should be introduced to model such flow. The purpose of this paper is to achieve a model within an in-house developed solver to simulate the ultrahigh-speed subsonic supercavitating flows.Design/methodology/approach An improved TAIT equation adjusted by local temperature is adopted as the equation of state (EOS) for the liquid phase, and the Peng-Robinson EOS is used for the vapor phase. An all-speed variable coupling algorithm is used to unify the computations and regulate the convergence at arbitrary Mach number. The ultrahigh-speed (Ma=0.7) supercavitating flows around circular disk are investigated in contrast with the case of low subsonic (Ma=0.007) flow.Findings The characteristic physical variables are reasonably predicted, and the cavity profiles are compared to be close to the experimental empirical formula. An important conclusion in the compressible cavitating flow theory is verified by the numerical result that, at any specific cavitation number the cavity’s size and the drag coefficient both increase along with the rise of Mach number. On the contrary, it is found as well that the cavity’s slenderness ratio decreases when Mach number goes up. It indicates that the compressibility has different influences on the length and the radius of the supercavity.Originality/value A high-speed model reflecting the compressibility of both the liquid and the vapor phases was suggested to model the ultrahigh-speed supercavitating flows around underwater projectiles. VL - 33 IS - 8 SN - 0264-4401 DO - 10.1108/EC-06-2015-0171 UR - https://doi.org/10.1108/EC-06-2015-0171 AU - Chen Ying AU - Lu Chuanjing AU - Chen Xin AU - Li Jie AU - Gong Zhaoxin PY - 2016 Y1 - 2016/01/01 TI - An approach for the numerical prediction of the compressible supercavitating flows over ultrahigh-speed underwater object T2 - Engineering Computations PB - Emerald Group Publishing Limited SP - 2356 EP - 2376 Y2 - 2024/04/23 ER -