To read the full version of this content please select one of the options below:

Investigation of turbulent flow through microchannels consisting of different micropost arrangements

Masoud Kharati-Koopaee (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran)
Mahsa Rezaee (Shiraz University of Technology, Shiraz, Iran)

Engineering Computations

ISSN: 0264-4401

Article publication date: 3 July 2017

Abstract

Purpose

The purpose of the current research is to study the turbulent flow through microchannels having a micropost in aligned and staggered arrangements.

Design/methodology/approach

Numerical calculations are performed on the basis of the finite volume approach, which is based on the SIMPLEC algorithm. In this work, the slip velocity, flow velocity distribution and friction factor for the two micropost patterns are examined at friction Reynolds numbers of Reτ = 395 and 590, relative module widths of Wm = 0.1 and 1 and cavity fraction range of Fc = 0.1 to 0.9.

Findings

Results reveal that for the two micropost patterns, as the friction Reynolds number, relative module width or cavity fraction increases, the slip velocity increases and friction factor decreases. It is found that the aligned micropost configuration leads to higher slip velocity and lower friction factor. Numerical findings indicate that the existence of the continuous cavity surface along the flow direction could be a significant criterion to realize if the velocity distribution deviates from that of the smooth channel. It is also shown that the turbulent flows are capable of producing more drag reduction than the laminar ones.

Originality/value

Previous studies have shown that microchannels consisting of a micropost pattern in aligned and staggered arrangements could be viewed as a promising alternative in the microscale flows for the heat removal purposes. Therefore, understanding the fluid flow through microchannels consisting of these configurations (which is a prerequisite to better understand thermal performance of such microchannels) is a significant issue, which is the subject of the present work.

Keywords

Citation

Kharati-Koopaee, M. and Rezaee, M. (2017), "Investigation of turbulent flow through microchannels consisting of different micropost arrangements", Engineering Computations, Vol. 34 No. 5, pp. 1367-1392. https://doi.org/10.1108/EC-02-2016-0069

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited