To read this content please select one of the options below:

New time-based model to identify the influential users in online social networks

Amin Mahmoudi (National University of Malaysia, Bangi, Malaysia)
Mohd Ridzwan Yaakub (National University of Malaysia, Bangi, Malaysia)
Azuraliza Abu Bakar (National University of Malaysia, Bangi, Malaysia)

Data Technologies and Applications

ISSN: 2514-9288

Article publication date: 26 January 2018

Issue publication date: 22 March 2018




Users are the key players in an online social network (OSN), so the behavior of the OSN is strongly related to their behavior. User weight refers to the influence of the users on the OSN. The purpose of this paper is to propose a method to identify the user weight based on a new metric for defining the time intervals.


The behavior of an OSN changes over time, thus the user weight in the OSN is different in each time frame. Therefore, a good metric for estimating the user weight in an OSN depends on the accuracy of the metric used to define the time interval. New metric for defining the time intervals is based on the standard deviation and identifies that the user weight is based on a simple exponential smoothing model.


The results show that the proposed method covers the maximum behavioral changes of the OSN and is able to identify the influential users in the OSN more accurately than existing methods.

Research limitations/implications

In event detection, when a terrorist attack occurs as an event, knowing the influential users help us to know the leader of the attack. Knowing the influential user in each time interval based on this study can help us to detect communities which formed around these people. Finally, in marketing, this issue helps us to have a targeted advertising.

Practical implications

User effect is a significant issue in many OSN domain problems, such as community detection, event detection and recommender systems.


Previous studies do not give priority to the recent time intervals in identifying the relative importance of users. Thus, defining a metric to compute a time interval that covers the maximum changes in the network is a major shortcoming of earlier studies. Some experiments were conducted on six different data sets to test the performance of the proposed model in terms of the computed time intervals and user weights.



This work is supported by Fundamental Research Grant Scheme (FRGS/1/2017/ICT02/UKM/02/4) of UKM University (National University of Malaysia).


Mahmoudi, A., Yaakub, M.R. and Abu Bakar, A. (2018), "New time-based model to identify the influential users in online social networks", Data Technologies and Applications, Vol. 52 No. 2, pp. 278-290.



Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles