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Abstract
Purpose – The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of
great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely
large nonlinear systems of equations impossible to solve with present computer resources reasonably. The
purpose of this study is to show that themultiscale finite elementmethod (MSFEM) overcomes this difficulty.
Design/methodology/approach – AnewMSFEM approach for eddy currents of laminated nonlinear iron
cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM
approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order
approach, the time steppingmethod andwith the harmonic balancemethod are introduced and studied.
Findings – Various simulations demonstrate the feasibility, efficiency and versatility of the newMSFEM.
Originality/value – The novel MSFEM solves true three-dimensional eddy current problems in laminated
iron cores taking into account of the edge effect.

Keywords Eddy currents, Finite element method, Biot–Savart field, Harmonic balance method,
Higher-order MSFEM, Multiscale finite element method, Time stepping method

Paper type Research paper

1. Introduction
A laminated core represents a periodic micro-structure which is well suited for the
multiscale finite element method (MSFEM). The aim of MSFEMs is to reduce the
computational costs of eddy currents in very large laminated iron cores drastically without
losing accuracy (Dular, 2008; Hollaus and Schöberl, 2018).

It can be stated that MSFEMs for eddy currents in laminated iron in two dimensions (2D)
are well established. Problems in 2D have been solved very satisfactorily using a magnetic
vector potential (MVP) A, a current vector potential T or a the mixed formulation with A
and the current density J, see (Hollaus and Schöberl, 2018).

However, MSFEMs for three-dimensional (3D) problems are still far away from being a
satisfactory solution. Analyzing the numerical examples in the literature it is very striking
to see that there have been no real 3D MSFEM simulations presented up to now. Most of the
examples are rotationally symmetric, for instance a toroidal transformer (Gyselinck et al.,
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2006), or the magnetic flux is parallel to the laminates (Dular, 2008). Both kinds of problems
exhibit no magnetic stray fields.

MSFEMs for 3D problems can be divided into methods solving real 3D problems and
those considering 2D/1D-problems. The 2D/1D-MSFEMs are based on the assumption that
the end effects of electrical machines, i.e. magnetic stray fields can be neglected; thus, each
laminate is exposed to the same electromagnetic field distribution and therefore a simulation
of a single laminate suffices, (Bottauscio and Chiampi, 2002; Rasilo et al., 2011). A 2D
problem is solved essentially reducing the computational costs compared to brute force 3D
finite element method (FEM) models (Handgruber et al., 2013; Schöbinger et al., 2018).

The present paper deals with problems where this assumption is not applicable and 3D
problems have to be solved. The aim of this work is to present a novel MSFEM for laminated
iron stacks in 3D and its universal applicability and efficiency compared to the standard finite
element method (SFEM). This MSFEM is based on A. After recalling the analytic solution of
eddy currents in an infinite slab the construction of the basic MSFEM approach withAwill be
discussed in detail. Different aspects like averaging of coefficients and the edge effect are
addressed. Themethod is capable to consider air gaps and the edge effect too.

Simulation results obtained by all specific MSFEMs will be shown and compared to
reference solutions computed by the standard finite element method (SFEM) demonstrating
the versatility of the new MSFEM for problems in 3D. The savings in computational costs
using the newMSFEM instead of SFEM are presented at the end.

2. The multiscale finite element method –MSFEM
A laminated iron core exhibits two very different scales. The large scale is determined by the
overall dimensions of a laminated core, e.g. the length L and the height H of a transformer
core as shown in Figure 1 on the left, and the small (micro-) scale determined by the tiny
dimensions of the thickness of the laminates d and the width of an air gap d0 in between, see
Figure 1 on the right. The ratio of these scales is about 106, and thus very large. Modeling
each laminate and air gap of large electrical devices would yield a very large finite element
model and consequently an extremely large equation system impossible to solve with
reasonable computational effort. However, a laminated iron core represents a quasi-periodic
structure, this means not strictly periodic because of the finite overall dimensions, which can
be exploited by the MSFEM advantageously. One period p is composed of d and d0.

To substantiate the MSFEM approach, the exact solution of eddy currents in an infinite
slab is highly relevant and for convenience the main results are summarized in the following
(Stoll, 1974). A Cartesian coordinate system is used.

A single component MVP A ¼ Aex is assumed to be selected at the surfaces z ¼ 6d=2
of the slab prescribing a magnetic flux per unit length, such that the magnetic fieldH points

Figure 1.
Large scale:
transformer core with
overall dimensions
(left), Fine scale:
thickness of the
laminate d andwidth
of the air gap d0
(right)
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into the y-direction inducing eddy currents pointing into the x-direction, i.e. H ¼ Hey and
J ¼ Jex, respectively, see Figure 2. On the other hand J ¼ �jvsA holds.

Provided the linear problem is given in the frequency domain, the quasi-static magnetic
field with the phasor convention ejv t reads as:

@2A
@z2

¼ sm
@A
@t

¼ jvsmA; (1)

with the solution:
A zð Þ ¼ A0sinh azð Þ; (2)

where:

a ¼ 1þ j
d

with the penetration depth d¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

vsm

s

Holds. The solution (2) is described by a hyperbolic sine which is an odd function. Therefore,
odd Gauss–Lobatto polynomials

f 1 sð Þ ¼ s

f 3 sð Þ ¼ 1
2

ffiffiffi
5
2

r
s2 � 1ð Þs

f 5 sð Þ ¼ 1
8

ffiffiffi
9
2

r
s2 � 1ð Þ 7s2 � 3ð Þs

(3)

are used for micro-shape functions f i sð Þ to construct MSFEM approaches with A. The
transformation s ¼ 2z=d holds with s 2 �1; 1½ � and z 2 �d=2; d=2½ �. The micro-shape
functions f i are extended by zero in � d0 þ dð Þ=2;�d=2

� �
and d=2; d0 þ dð Þ=2� �

including
the air gap, except f 1 which is extended linearly and becomes zero in
f� d0 þ dð Þ=2; d0 þ dð Þ=2g. Figure 3 shows how the micro-shape functions f i fit into the
periodic structure with d and d0.

Thus, the polynomials facilitate the required continuity of the unknown solution,
f i (–1) = 0 and f i (1) = 0 with i=3, 5.

2.1 Construction of a multiscale finite element method approach with A
To construct a MSFEM approach withA, the eddy currents of a reference solution, detailed
in Figure 4, are studied.

Based on the eddy current distribution, the approach:

Figure 2.
Infinite slab with
fields (left) and
solutions (right)
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~A ¼ A0 þ f 1A1 þ grad f 1w1ð Þ (4)

is found. The first term A0 in (4) describes the large-scale behavior of the solution, whereas
the others that of the fine scale. The large-scale behavior takes account of the large eddy
current loops induced by the magnetic stray flux perpendicular to the lamination (Figure 5).
At the fine scale, the main magnetic flux parallel to the lamination induces eddy currents
confined to flow in very narrow loops shown in Figure 6. These currents are assumed to be
split into two parts. The laminar part which is parallel to the laminates and represented by
the second term in equation (4), the third term includes the edge effect, i.e. the part where the
currents turn around to form closed loops (Figure 6).

The boundary value problem to be solved is the ECP:

curl m�1curl Aþ jvsA ¼ J 0 in X¼Xc [ X0;
A� n ¼ a on CD;

m�1curlA� n ¼ K on CN; (5)

Figure 3.
Gauss–Lobatto
polynomials are the
micro-shape
functions, scaled s [
(Dular, 2008), the
laminate is grey

Figure 4.
Eddy currents due to
the main magnetic
flux in laminates with
the edge effect, detail

Figure 5.
Magnetic stray flux
(green) and a large
eddy current loop
(red)
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where Xc represents the conducting domain (iron) and X0 the non-conducting domain (air).
The weak form is:

FindAh 2 Va :¼ fAh 2 Vh : Ah � n ¼ ah onCDg, such thatð
X
m�1curl Ah � curl vh dXþ jv

ð
X
sAh � vh dX

þ
ð
X0

s 0Ah � vh dX ¼
ð
X
J 0 � vh dXþ

ð
CN

K � vh dC (6)

for all vh 2 V0, where Vh � H curl;Xð Þ.
For a unique solution the regularization with 0 < s 0 � s is applied (Ledger and

Zaglmayr, 2010). The solution of equation (6) with the SFEM serves as reference solution for
the MSFEM. To end up with a weak form for the MSFEM, equation (4) becomes the trial
function and

~v ¼ v0 þ f 1v1 þ grad f 1q1ð Þ (7)

the test function with the same structure. Tilde marks the multiscale approach. The
laminated domain Xm consists of the iron laminates and the air gaps. A1, w1 and f 1 are
restricted to Xm, whereas A0 is valid in the entire domain X ¼ Xm [ X0. Dirichlet and thus
essential boundary conditions are prescribed by means of A0 exclusively, and only natural
boundary conditions are provided for A1 and w1. This is especially true for planes of
symmetry. To obtain the weak form for the MSFEM, simply speaking, Ah and vh in the
weak form of the SFEM [equation (6)] are replaced by ~Ah and ~vh, respectively, resulting in:
Find

A0h;A1h;w1hð Þ 2 Va :¼ f A0h;A1h;w1hð Þ : A0h 2 Uh;A1h 2 Vh ;w1h

2 Wh andA0h � n ¼ ah onCg;
such that: ð

X

1
m
curl ~Ah

� �
� curl ~vhð Þ dXþ jv

ð
X
s ~Ah � ~vh dX

þ
ð
X0

s 0A0h � v0h dX ¼
ð
X
J 0 � ~vh dXþ

ð
CN

K � ~vh dC (8)

for all v0h; v1h; q1hð Þ 2 V0, where Uh � H curl;Xð Þ; Vh � H curl;Xmð Þ and Wh � H1 Xmð Þ
have been selected. The micro-shape function f 1 is a periodic, piecewise linear and
continuous function, i.e. f 1 2 Hper Xmð Þ.

Figure 6.
Main magnetic flux
(green) and a narrow

eddy current loop
(red) in a small part at
the end of a laminate,

fictitious
decomposition of the

current density
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2.2 Averaging of the highly oscillating coefficients
The arising highly oscillating coefficients in equation (8) make the finite element assembling
very expensive. To overcome this problem these coefficients are averaged. Here, the stiffness
term is treated representing themass term too.Writing the stiffness term in detail yields:ð

X

1
m
curl A0 þ f 1A1 þ grad f 1w1ð Þ� � � curl v0 þ f 1v1 þ grad f 1q1ð Þ� �

dX

5

ð
X

1
m
curl A0ð Þ þ f 1;z

1
m

�A1y

A1x

0

0
@

1
Aþ f 1

1
m
curl A1ð Þ

0
@

1
A

� curl v0ð Þ þ f 1;z

�v1y
v1x
0

0
@

1
Aþ f 1curl v1ð Þ

0
@

1
A dX

and carrying out the multiplications leads to:ð
X

1
m
curl A0ð Þ � curl v0ð Þ þ 1

m
f 1;z

�A1y

A1x

0

0
@

1
A � curl v0ð Þ

0
@

þ 1
m
f 1curl A1ð Þ � curl v0ð Þ þ 1

m
f 1;zcurl A0ð Þ �

�v1y
v1x
0

0
@

1
A

þ 1
m
f 2

1;z

�A1y

A1x

0

0
@

1
A �

�v1y
v1x
0

0
@

1
A

þ 1
m
f 1f 1;zcurl A1ð Þ �

�v1y
v1x
0

0
@

1
Aþ � � �

�
dX:

Analogue operations are carried out also for the mass term of equation (8).
Coefficients 1

m ;
1
m f 1;z;

1
m f 1, etc. and s , sf 1;z; sf 1, etc. are averaged over the period

p= dþ d0:

l ¼ 1
p

ðp
0
l zð Þdz ¼ l Fed þ l 0d0

p

l f 1;z ¼
1
p

ðp
0
l zð Þf 1;z zð Þdz ¼ 2

l Fe � l 0

p

l f 1 ¼
1
p

ðp
0
l zð Þf 1 zð Þdz ¼ 0

l f 2
1;z ¼

1
p

ðp
0
l zð Þf 2

1;z zð Þdz ¼ 4
p

l Fe

d
þ l 0

d0

� �

l f 1;zf 1 ¼
1
p

ðp
0
l zð Þf 1;z zð Þf 1 zð Þdz ¼ 0 (9)

where l means either 1
m or s in iron or air. The bar marks averaging.
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Highly oscillating coefficients are replaced by averaged ones, whereby the bilinear form
and the linear form in

ð
X

1
m
curl A0

� �
� curl v0ð Þ þ f 1;z

1
m

�A1y

A1x

0

0
B@

1
CA � curl v0ð Þ þ f 1

1
m
curl A1

� �
� curl v0ð Þ

0
B@

þ 1
m
f 1;zcurl A0

� �
�

�v1y
v1x
0

0
@

1
Aþ 1

m
f 2

1;z

�A1y

A1x

0

0
B@

1
CA �

�v1y
v1x
0

0
@

1
A

þ 1
m
f 1f 1;zcurl A1

� �
�

�v1y
v1x
0

0
@

1
Aþ � � �Þ dXþ jv

ð
X

sA0 � v0
�

þ f 1s A1 � v0 þ f 1;zs
0
0
w1

0
@

1
A � v0 þ f 1s grad w1ð Þ � v0 þ � � �Þ dX

þ
ð
X0

s 0A0h � v0h dX5
ð
X0

J 0 � v0h þ
ð
CN

K � v0h dC dX (10)

modifying the unknown quantities indicated by the bar. The error due to averaging is
assumed to be negligibly small (Hollaus and Schöberl, 2018).

The averaged coefficients are constant and therefore a rather coarse FE-mesh
suffices to get an accurate approximation of the solution. In fact, equations (8) and (10)
are solved.

2.3 Biot–Savart field and multiscale finite element method
Fields due to currents in coils can be considered by the Biot–Savart field. Rearranging of the
linear form yields: ð

Xs

J S � v0h dX ¼
ð
Xs

curlH S � v0h dX ¼

i tð Þ
ð
Xs

curlhS � v0h dX ¼ i tð Þ
ð
X
hS � curlv0h dXþ

i tð Þ
þ
C
hS � v0hð Þ � n dC; (11)

where hS is the Biot-Savart-field

hS ¼ 1
4p

ð
Xs

jS � rF � rSð Þ
jrF � rSj3

dX (12)

of the unit current. By averaging only v0h remains as test function for the linear form.
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3. Numerical example
The single phase transformer shown in Figure 7 is used to study various simulations of
different MSFEMs. The core consists of 183 laminates yielding a fill-factor of kf =
0.9734. An electric conductivity of s = 2.0 · 106 S/m and a relative permeability of m r =
1,000 in the linear case have been selected. The cross-section of a cylindrical coil is
shown in Figure 8. It consists of two layers (dark rings), 60 turns per layer. The length
of the coil equals 192 mm. The arrangement of the core with the coils exhibit three
planes of symmetry.

A handmade mesh was created by means of hexahedral FEs to simplify the modeling of
each laminate for the reference solution. The Biot–Savart field was used to avoid the
modeling of the cylindrical coils. Due to the symmetry one eighth of the problem has been
considered in the simulations.

4. Different simulations
4.1 Frequency domain and higher-order multiscale finite element method
We start with the linear case in the frequency domain and show how to cope with small
penetration depths making use of higher-order MSFEM (HMSFEM). To this end, the basic
approach [equation (4)] is extended by adding higher order micro-scale terms (Hollaus and
Schöberl, 2015), leading to:

Figure 7.
Single phase
transformer,
dimensions in mm

Figure 8.
Cross-section of the
cylindrical coil with
dimensions in mm,
not scaled
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~A ¼ A0 þ f 1A1 þ grad f 1w1ð Þ
þf 3A3 þ grad f 3w3ð Þ
þf 5A5 þ grad f 5w5ð Þ: (13)

Figure 9 shows the eddy current losses computed by SFEM and MSFEM. The relative error
of MSFEM presented in Figure 10 is obtained by comparing to SFEM results which have
been obtained by a brute force finite element model discretizing each steel sheet. The lowest-
order MSFEM approach [equation (4)] is valid as long as the variation of the MVP across the
laminate thickness dfe can be approximated by a linear function well. For decreasing
penetration depths d approach [equation (4)] starts to fail.

By adding higher-order terms, the accuracy is clearly improved. The reason why the
fifth-order approach does not show a better accuracy than the third-order one is that the
reference solution is not reliable for high frequencies. Reference solutions for an order higher
than 3 could not be solved on the available server with 4 times 16 cores (Intel(R) Xeon(R)
CPU E7-8867 v3) and 2 TByte RAM.

4.2 Time stepping method and time stepping method multiscale finite element method
To deal with nonlinear materials simulations with the time stepping method (TSM) and
MSFEM (TSMSFEM) have been carried out using implicit Euler as time stepping scheme

Figure 9.
Eddy current losses

versus frequency

Figure 10.
Error versus

frequency
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and the fixed point method Bír�o and Preis (1995) has been exploited to solve the nonlinear
system. Iron is highly nonlinear, but assumed to be isotropic. The magnetization curve used
in the simulations is determined by measurement points and linear interpolation (Figure 11).
The curve is convex-concave. Input currents are selected with 1.0, 2.0 and 3.0A (peak value)
to deal with different states of saturation. Simulations with these currents have been carried
out at 50 and 500Hz. For the reasons of comparability, the eddy current losses in the
laminated core presented in Figures 12 to 17 are scaled to the current in the wire of the coils I
squared.

4.2.1 Results, 50Hz. The Figures 12 to 14 show the losses at f=50Hz. The agreement of
the losses with respect to time obtained by SFEM and MSFEM is excellent. The influence of
the saturation due to different input currents is clearly visible.

4.2.2 Results, 500Hz. Eddy current losses obtained at f=500Hz (Figures 15 to 17) show
a clear transient initial phase behavior before the steady state is reached. A very satisfactory
agreement between SFEM andMSFEM is obtained.

4.3 Harmonic balance method and MSFEM
Most of the sources of ECPs alternate harmonically in time and only the solution of the
steady state has to be calculated. However, in case of nonlinear materials, the solution

Figure 11.
Magnetization curve
(M400-50A), convex-
concave

Figure 12.
Scaled eddy current
losses inWatt per
Ampere squared
versus time, f = 50Hz
and I= 1 A
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is not harmonic any more, but still periodic. Thus, the solution can be represented as a
Fourier series. This can be exploited advantageously by the harmonic balance method
(Yamada and Bessho, 1988) or as also called the multi-harmonic ansatz (Bachinger
et al., 2005), i.e. a truncated Fourier series expansion at a finite number. Only a few

Figure 14.
Scaled eddy current
losses inWatt per
Ampere squared

versus time, f = 50Hz
and I= 3 A

Figure 13.
Scaled eddy current
losses inWatt per
Ampere squared

versus time, f = 50Hz
and I= 2 A

Figure 15.
Scaled eddy current
losses inWatt per
Ampere squared

versus time,
f = 500Hz and I= 1 A
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harmonics are required for a sufficiently accurate approximation. That’s why the
harmonic balance method is superior to the time stepping method particularly in case
of a transient that takes a long time. The harmonic balance finite element method
(HBFEM) saves mainly computation time in simulations of large devices with
harmonic excitation and nonlinear material properties. A rigorous estimate for the
total error due to the use of truncated Fourier series is presented in Bachinger et al.
(2005). The successful use of HBFEM in simulations of electromagnetic devices in the
frequency domain can be found in De Gersem et al. (2001) or in Gyselinck et al. (2002).
A 2D FEM considering the main magnetic flux with a 1D diffusion equation across the
lamination and using a multi-harmonic ansatz of the MVP including hysteresis is
shown in Bottauscio et al. (2000).

The harmonic balance method is combined with the MSFEM (HBMSFEM) to exploit the
advantages of both methods.

For nonlinear problems with time harmonic excitation and steady state, the harmonic
balance method is preferably used (Bír�o and Preis, 2006). The steady state solution u x; tð Þ is
periodic in timewith periodT:

u x; tð Þ ¼ u x; t þ Tð Þ; t 2 R

Figure 16.
Scaled eddy current
losses inWatt per
Ampere squared
versus time,
f = 500Hz and I= 2 A.

Figure 17.
Scaled eddy current
losses inWatt per
Ampere squared
versus time,
f = 500Hz and I= 3 A
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An approximated solution can be written as a truncated Fourier series:

u xð Þ ¼ u0 xð Þ þ
XN
k¼1

uc
2k�1 xð Þcos 2k� 1ð Þv tð Þ þ us

2k�1 xð Þsin 2k� 1ð Þv tð Þ (14)

with superscripts c and s for cosine and sine, respectively, and with the upper boundN.Based
on the basic MSFEM approach [equation (4)], the HBMSFEM approach can be written as:

Â ¼ A0 xð Þ þ
XN
k¼1

~A
c
2k�1 xð Þcos 2k� 1ð Þv tð Þ þ ~A

s
2k�1 xð Þsin 2k� 1ð Þv tð Þ (15)

with the coefficient functions:

~A
a

2k�1 xð Þ ¼ Aa
0;2k�1 xð Þ þ f 1A1;2k�1 xð Þ þ grad f 1w

a
1;2k�1 xð Þ� �

; (16)

where a = c,s and k 2 N; k#N holds. The time average A0 xð Þ in equation (15) is not
used in this work. The hat indicates truncated Fourier expansion of the HBMSFEMapproach.
To compare the results of TS and HBFEM, the losses obtained by TS are averaged over the
first and second period. Simulation results for the losses are summarized for f=50 and
f=500Hz in Appendix 1 in Tables I and II. There is a very satisfactory agreement.

5. Computational costs
The number of required degrees of freedom (DOFs) is valid for one-eighth of the single
phase transformer and is given in Appendix 2 in Tables III. In general, using MSFEM the
number of DOFs can be reduced by a factor of about ten for the studied example of the
single phase transformer in the present work.

6. Discussion
The presented MSFEM fits very well to ECPs in transformers. Electrical machines can be
treated in two ways. The assumption that each iron sheet is exposed to the same
electromagnetic field pattern is often permitted. In this case, a 2D/1D MSFEM can be
exploited advantageously (Schöbinger et al., 2019; Hollaus et al., 2018). However, when
the stray field cannot be neglected or its influence is of interest, a method which copes with
3D problems is absolutely necessary. The presented MSFEM should also work for 3D
problems of electrical machines.

The reduction of computational costs grows with the number of iron sheets in the
laminated core. Although, applying MSFEM reduces large problems essentially, the
remaining complexity is still too large to be solved conveniently. Further methods based on
MSFEM needs to be developed.

Large equation systems resulting from problems with many very thin iron sheets
compared to the overall dimensions of the core are extremely ill-conditioned and except
small problems impossible to solve iteratively due to the lack of an appropriate
preconditioner. Similarly, an appropriate preconditioner is missing for equation systems
from the MSFEM too. Therefore, both the reference problems and the MSFEM problems
have been solved using a direct solver.
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7. Conclusions
Based on the results in this work, it can be concluded that the MSFEM presented here is
very powerful because it reduces the complexity of the ECP in laminated iron cores
essentially compared to SFEM and discretizing each sheet, copes with any penetration
depth, considers the edge effect, allows to include nonlinear material properties in a
straightforward way and is capable to deal with real 3D problems.
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Appendix 1. Eddy current losses

Appendix 2. Computational costs
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Table AI.
Eddy current losses
in W at f = 50Hz

I in A 1 2 3
Period \TS SFEM MSFEM SFEM MSFEM SFEM MSFEM

TSM 1st Period 3.51 3.52 8.92 8.97 13.1 13.3
TSM 2nd Period 3.58 3.526 9.062 9.091 13.73 13.79
HBMSFEMa 3.979 9.112 14.05

Note: aUp to the 5th harmonic.

Table AII.
Eddy current losses
in W at f = 500Hz

I in A 1 2 3
Period \TS SFEM MSFEM SFEM MSFEM SFEM MSFEM

TSM 1st Period 104 108 401 412 632 646
TSM 2nd Period 135 141 537 550 853 869
HBMSFEMa 137 539 801

Note: aUp to the 5th harmonic.

Table AIII.
No. degrees of
freedom DOF

Method
SFEM MSFEM

FE order DOF FE order MSFEM order DOF

Time harmonic 3 8,739,144 2 3 310,082
Time stepping 1 1,116,860 1 1 103,879
Harm. balancea LOb 874,836 LOb 1 95,256
Harm. balancea 1 6,701,160 1 1 623,274

Notes: aUp to the 5th harmonic. bLowest order Nédélec elements
Source: Schöberl and Zaglmayr (2005).
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