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Abstract
Purpose – The purpose of this paper is to evaluate the worst-case behavior of a given electronic circuit by
varying the values of the components in a meaningful way in order not to exceed pre-defined currents or
voltages limits during a transient operation.
Design/methodology/approach – An analytic formulation is used to identify the time-dependent
solution of voltages or currents using proper state equations in closed form. Circuits with linear elements
can be described by a system of differential equations, while circuits composing nonlinear elements are
described by piecewise-linear models. A sequential quadratic program (SQP) is used to find the worst-case
scenario.
Findings – It is found that the worst-case scenario can be obtained with as few solutions to the forward
problem as possible by applying an SQPmethod.
Originality/value – The SQP method in combination with the analytic forward solver approach shows
that the worst-case limit converges in a few steps even if the worst-case limit is not on the boundary of the
parameters.
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Circuit simulation, SQP, Time-domain analysis
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1. Introduction
Electronic components always come along with certain tolerances; therefore, worst-case
dimensioning of electronic circuits composed of such components has been gaining more
and more importance. Some simulators [e.g. LTspice (Analog Devices, 2019) and PSpice
(Orcad PSpice, 2019)] offer the possibility for a Monte Carlo (MC) analysis. This analysis
provides statistical data on the impact of a device parameter’s variance. A major
disadvantage of stochastic methods is that they require a high number of simulation runs
to reach the worst-case limits. This can be improved advantageously by solving currents
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and voltages analytically. The proposed approach allows conducting a full search over
the parameter space. This, in turn, provides the possibility of worst-case analyses of the
different parameters of interest. (In our example cases the maximum current that may
occur was chosen.) Additionally, it allows full flexibility in modeling the individual
components and their parameters. Furthermore, simulation results are extremely
compact and can theoretically be stored with arbitrary precision. Finally, the objective
function f(x) needed for any optimizer is available in analytic form. In this paper, the
analytic forward solver approach (AFSA) and the sequential quadratic program (SQP)
are implemented in Maple (Maplesoft, 2019), a computer algebra system (CAS). Section 2
explores the analytic forward solver approach and the SQP approach. Section 3 describes
the chosen example case application, a closed-loop flyback converter and compares the
performance of the SQP method with an MC analysis and evolution strategy. Examples
for interesting references in the context of worst-case and sensitivity analyses are given
by Chiariello et al. (2015), Khaligh et al. (2006); Lian (2012).

2. Method overview
2.1 Analytic forward solver approach
Today, many circuit simulators for electronic circuits with different approaches are
available. The proposed approach uses analytic solution techniques and has been developed
especially for optimization and worst-case dimensioning of small-scale electronic circuits.
The advantages are:

� the full flexibility in the modeling of the individual components and their
parameters;

� simulation results are extremely compact and can theoretically be stored with
arbitrary precision; even with a high number of simulation runs, the generated data
remain easy to handle; and

� analytic methods show the potential of more efficient parameter studies.

While a comprehensive review of all existing circuit simulators is not within the scope of
this paper, a short overview is nevertheless provided, for the sake of completion. The
analytic forward solver approach supports analytic time-domain transient analysis for
switched networks with piecewise-linear models and uses analytic methods for solving
the systems of ordinary differential equations (ODEs). Symbolic simulators like ISAAC
(Gielen et al., 1989), SAPWIN (Liberatore et al., 1995; Fontana et al., 2015) and Analog
Insyde (Thomassian, 2007) exist. These simulators do not support fully analytic time-
domain transient analysis for switched networks with piecewise-linear models. The
simulator for integrated switched-mode power supplies circuits (SISMPSC) (Cliquennois
and Trochut, 2007) is based on symbolic calculus tools and supports symbolic state-space
equations (SSSE) but uses numerical methods for solving the systems of ordinary
differential equations (ODEs). For the elemental circuit description the analytic forward
solver approach uses a special Circuit-Model instead of the widely used netlist as, for
example, used in the different implementations of the core SPICE algorithm SPICE2
(Nagel, 1975), LTspice and PSpice. A Circuit-Model describes the electronic circuit with
symbolic ordinary differential equations, if state variables are present. In the case of no
state variables, the electronic circuit is described by symbolic algebraic equations. The
electronic circuit to be simulated may contain linear and nonlinear components. Linear
parts are described directly with a SubCircuit-Model, an extended symbolic state-space
model (ESSSM) and nonlinear ones with a Circuit-Model, comprising several SubCircuit-
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Models itself, the associated boundary conditions and a state table. The fulfilled
boundary conditions of the active SubCircuit-Model are the reference (input for the state
table) for the next SubCircuit-Models. An example of a SubCircuit-Model is shown in
Figure 1.

The associated ESSSM is described by (1)-(3). Equation (1) represents the system of
differential (state) equations, (2) the signal of interest, and (3) the I/O interface. In this
example, the input-cell yI(t) of the I/O interface is not defined:

L1
dIL1 tð Þ
dt

C1
dVC1 tð Þ

dt

2
6664

3
7775 ¼ �R1 �1

1 0

" #
IL1 tð Þ
VC1 tð Þ

" #
þ Vinsin v tð Þ

�Iout tð Þ

" #
(1)

y tð Þ ¼ IL1 tð Þ (2)

I/O interface:

yIO tð Þ ¼ yI tð Þ
yO tð Þ

" #
with (3)

yI tð Þ ¼
� �

yO tð Þ ¼ Iout tð Þ
VC1 tð Þ

" #
(4)

A collection of predefined SubCircuit-Models is provided for the individual circuit design.
Connecting such simple predefined SubCircuit-Models results in a new SubCircuit-Model.
This results in a large number of possible SubCircuit-Models. The advantage of this
approach is that the electronic circuit to be simulated can be built from such SubCircuit-
Models without transformation to a state-space model; only the I/O definitions must be
substituted.

The ODE system solver module generally solves the ODE system from each SubCircuit-
Model. The proposed approach uses the built-in ODE solver fromMaple. Out of the different
solver methods and options available, the proposed approach uses the Laplace method.
When the ODE system from each SubCircuit-Model has been solved once, the solution is
stored and, therefore, the ODE system does not need to be solved again. The analytic
solution of the ODE System (1) for IL1(t) from the SubCircuit-Model in Figure 1 is shown (5).
The initial conditions IL1(0),VC1(0) and Iout(t) were set to 0.

Figure 1.
SubCircuit-Model:

RLC series
resonant circuit
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IL1 tð Þ ¼ M1

4kL1
E1 C1R1kv þM2ð Þ þ D0ð Þ

� M1

4kL1
E2 C1R1kv �M2ð Þð Þ

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 C1R2

1 � 4L1
� �� �q

D0 ¼ 4VinC1L1kv 1� C1L1v
2

� �
cos v tð Þ

þ 4VinC2
1L1R1kv 2sin v tð Þ

E1 ¼ Vin �C1R1 þ kð Þe12
�C1R1þkð Þt

C1L1

E2 ¼ Vin C1R1 þ kð Þe�1
2

C1R1þkð Þt
C1L1

M1 ¼ 1
v 4C2

1L
2
1 þ v 2C2

1R
2
1 � 2v 2C1L1 þ 1

M2 ¼ 2C2
1L

2
1v

3 þ C2
1R

2
1v � 2C1L1v

(5)

The time-domain transient analysis for a Circuit-Model starts at the first SubCircuit-Model,
then, the boundary conditions for this SubCircuit-Model are verified. The fulfilled boundary
condition determines the next SubCircuit-Model and the analytic solution for that time
interval. This is repeated until the final circuit operating time to be simulated tSim, is reached.

2.2 Sequential quadratic program approach
The implemented SQP method (6) is based on an active set strategy with linear inequality
constraints (7) (Fletcher, 2000):

min
x2Rn

f xð Þ ¼ 1
2
xTHxþ cTx (6)

subject to Ax � b (7)

where:
x = column vector of the device parameters;
f(x) = objective function;
H =Hessian matrix of the objective function;
c = gradient of the objective function;
A = constantm� nmatrix;
b = constant column vector b [Rm;
n = number of parameters; and
m = number of constraints.

The Hessian matrix H is updated in each iteration step until the optimal solution is found.
To apply an SQP strategy, the objective function f(x) must be defined; for example, the
inductor current (2) shown in Figure 1. The SQP strategy generally finds the minimum of
the objective function f(x), in case of the maximum –f(x) must be used instead. The
inequality constraints (7) are constructed from the device parameter bounds. In case of n
device parameters, it ism=2n. The general form of (7) in matrix form is described in (8).
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2.3 Worst-case analysis of a resistor inductor capacitor (RLC) series resonant circuit
The schematic of the RLC series resonant circuit is shown in Figure 1. Table I summarizes
the values of the components and the SQP parameters. The maximum peak inductor current
Î L1 in steady-state should be determined as a function of two parameters, e.g. t and L1. The
objective function f(x) for the minimum peak inductor current is obtained by the evaluation
of the component values from Table I in (5). The objective function for themaximum is:

f xð Þ ¼ IL1max t;L1ð Þ ¼ �IL1 t;L1ð Þ: (9)

To find the maximum peak inductor in steady-state, the lower bound for t was chosen to be
10 times larger than the period T = 1/f. The 3-D plot of the objective function IL1 max(t, L1) (9)
including the solution path of the SQP method is illustrated in Figure 2. The implemented
SQP method converges to the maximum after 7 iterations (summarized in Table II) with
ĵI L1j ¼ 0:04A and is also visualized in the contour plot in Figure 3. The solution of the SQP
method is exactly the same as expected: at the resonant frequency, the capacitive and
inductive reactances cancel each other and the current through the inductor L1 is only
limited by the resistorR1, hence Î L1 ¼ Vin=R1 ¼ 0:04 A.

3. Example case
The performance of the proposed approach is demonstrated by a worst-case analysis of a
flyback converter in continuous conduction mode (CCM). The goal is to determine the
maximum magnetizing current Î LM from the transformer T1 in steady-state. This is
especially important for the transformer design. The schematic of the closed-loop flyback
converter is shown in Figure 4 and is divided into three parts:

(1) Power stage: includes a real transformer with the winding resistance RP, the
magnetizing inductance LM, an ideal transformer T1, a power switch Q1, a current
sense resistor RSense, the secondary rectifier D1 and the output filter CO. The power

Table I.
Component values

and SQP parameters
RLC series resonant
circuit of Figure 1

Components Parameter Lower bound Upper bound
values xi

Vin = 2V t tmin = 10 s tmax = 10.5 s
R1 = 50 X L1 L1 min = 0.1 H L1 max = 30H
C1 = 15 mF
v = 2 p f
f=1Hz
Iout(t) = 0A
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switch Q1 is modeled as a voltage controlled ideal switch with two resistors
Q1RDS onð Þ representing the resistance in the on-region and the resistance Q1RDS offð Þ
for the cut-off region.

(2) PWM controller: for the control method, peak current mode control with constant
switching frequency FS is chosen and is implemented at the PWM controller block.
A detailed structure of the PWM controller is shown in Figure 5.

Figure 2.
RLC series resonant
circuit IL1 max(t, L1)

Table II.
SQP Method on RLC
series resonant
circuit of Figure 1

k 0 1 2 3 4 5 6

t(k) in s 10.1 10.41 10.46 10.44 10.29 10.24 10.25
L kð Þ
1 in H 15.0 15.0 9.735 5.999 0.4609 1.452 1.692

I kð Þ
L1max in mA 8.062 –20.53 –24.58 –27.31 –36.25 –39.98 –40.0

Figure 3.
RLC series resonant
circuit contour plot
IL1 max(t, L1)
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(3) Compensator: a Type II compensator (Ridley, 2011; Basso, 2012) is used,
containing the error amplifier EA1, a diode DEA, and a voltage reference VRef to
model an adjustable shunt regulator (such as TL431). The error amplifier EA1 is
modeled as an ideal amplifier with infinite gain. The diode DEA is used to add an
additional offset to the output level of EA1 and also ensures that the amplifier can
only sink the current. The optocoupler IC1 is modeled in the forward linear region
by multiplying IF with a constant factor, the current transfer ratio (CTR)
IC = CTR IF and in the saturation region by a constant voltage source VCE(sat).

In general, many switching cycles are necessary until the system has reached the steady-state
behavior in the case of switching mode power supply. In steady-state, a PWM signal with
constant duty-cycle don is generated in the way that the average output voltage VO equals
VO nom. The compensator and the PWM controller are responsible for tuning the duty-cycle.

3.1 Steady-state analysis
The major advantage of the analytic forward solver approach is that the unknown duty-
cycle in steady-state can be calculated based on the analytic solutions of the state variables

Figure 4.
Schematic: a closed-

loop flyback
converter with peak
current mode control

Figure 5.
Block diagram peak
current mode PWM

controller
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and/or signal of interest, e.g. (2). In addition, the closed-loop flyback converter can be
simplified to an open-loop flyback converter or Power Stage. This means that no additional
algorithms are needed for the steady-state analysis, e.g. as used in (Li and Tymerski, 2000;
Wong et al., 2000; Setiawan et al., 2017; Moskovko and Vityaz, 2018). The flyback converter
Power Stage operating in CCM has two SubCircuit-Models (states): Figure 6 shows steady-
state waveforms of the state variables for one switching cycleTS = 1/FS.

� State 1: PWM high, MOSFET Q1 is switched on (saturation) and D1 switched off
(reverse bias) with 0< t# ton.

� State 2: PWM low, MOSFET Q1 is switched off (cut-off) and D1 switched on
(forward bias) with ton < t< TS.

The initial conditions of the state variables in state 1 can be expressed as:

ILM10 ¼ ILMoff TS � tonð Þ (10)

VCO 10 ¼ VCO off TS � tonð Þ (11)

and for state 2 as:

ILM20 ¼ ILMon tonð Þ (12)

VCO 20 ¼ VCO on tonð Þ: (13)

VOnom ¼ 1
TS

ðton
0

VCO 1 tð Þdt þ
ðTS

ton
VCO 2 tð Þdt

 !
(14)

Equation (14) expresses that the average voltage VCO on the capacitor CO equals VO nom.
Using (10) and (11) in (12) and (13) with (14) results in a system of equations with three
unknowns ILM 20, VCO 20, and ton. For a better performance the system of equations in
analytic form (generated by the analytic forward solver approach) are solved numerically.

Figure 6.
Waveforms flyback
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3.2 Sequential quadratic program result
The solution for the initial condition ILM 20 of the system of equations (12)-(14) corresponds
to Î LM. The objective function for themaximummagnetizing current is

f xð Þ ¼ �ILM20: (15)

Table III summarizes component values and parameters for the closed-loop flyback
converter and Table IV summarizes the values the SQP parameters.

The implemented SQP method converges to the maximum after 6 iterations with
ĵI LMj ¼ 2:583A.

3.3 Transient simulation
To verify the results from the SQP method in steady-state, for each iteration k (summarized
in Table V) a transient simulation of the closed-loop flyback converter has been performed
with the same parameters in Table IV and III as shown in Figure 7. The transient simulation

Table III.
Component values
and parameters for

the closed-loop
flyback converter of

Figure 4

Power stage PWM controller Compensator

RP = 0.2 X VPWM low ¼ 0V VRef = 2.5 V
T1 Ratio = 0.25 VPWM high = 10V RD1 = 110 kX

Q1Vth onð Þ ¼ 3:5V Se ¼ 0:01
V
ms

RD2 = 10 kX

Q1 RDS onð Þ ¼ 0:34X VDC Offset = 0V RE = 1 kX
Q1 RDS offð Þ ¼ 0:1 GX VFB0 = 6.6 V RBias = 1 kX
D1 RD = 50 mX RFB = 1 kX CZ = 4.7 nF
CO = 2200 mF D3 VF = 1.4 V CP = 0 pF
RL = 10 X R1 = 20 kX DEAVF ¼ 2:5V
VOnom ¼ 30V R2 = 10 kX IC1VF ¼ 1:1V

ZD1VZ ¼ 1V IC1 CTR ¼ 2
IC1VCE satð Þ ¼ 0:5V

Table IV.
SQP Parameters for

the closed-loop
flyback converter of

Figure 4

Parameter xi Lower bound Upper bound

VDC VDC min = 100V VDC max = 300V
LM LM min = 330 mH LM max = 470 mH
FS FS min = 95 kHz FS max = 105 kHz
D1 VF D1VFmin ¼ 0:6V D1VFmax ¼ 1:2V
RSense RSense min = 0.1425 X RSense max = 0.1575 X

Table V.
SQP Method on

closed-loop flyback
converter of Figure 4

k 0 1 2 3 4 5

V kð Þ
DC in V 202.0 202.0 201.999 201.986 100.0 100.0

L kð Þ
M in mH 380.0 330.0 330.0 330.0 330.0 330.0

F kð Þ
S in kHz 100.0 100.0 100.0 100.0 99.8984 95.0

D kð Þ
1VF in V 0.7 0.7 1.2 1.2 1.2 1.2

R kð Þ
Sense in X 0.14 0.14 0.1416 0.1575 0.1575 0.1575

I kð Þ
LMmax in A –2.215 –2.368 –2.387 –2.38702 –2.539 –2.583
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results are obtained by applying the AFSA to the Circuit-Model of the closed-loop flyback
converter. The simulation time tSim was set to 30ms. The results from the SQP method are
shown in Figure 7 as horizontal lines, these are marked with jI kð Þ

LMmaxj. The peak currents of
the transient simulations exactly matches the SQP results, having the same colors.

3.4 Performance comparison
To compare the performance of the SQP method, an MC analysis and evolution strategy
(1þ 1) ES (Beyer, 2001) has been implemented in Maple as well. The implemented MC
analysis uses the continuous uniform distribution over the parameter ranges. All methods
use the same objective function (15). Table VI summarizes the iterations for the methods and
results. The (1þ 1) ES method and the SQP methods provide the same result; however, the
number of iterations for convergence varies greatly. TheMCmethod could not find the exact
worst-case value even at higher iterations runs k. The total CPU time of the SQP method is
significantly shorter than that of the other two (e.g. �1/9, 1/95, 1/7), illustrating the
advantage of the AFSA.

3.5 A more complex example case
The example of the worst-case tolerance analysis of a flyback converter in CCM was shown.
The example can be extended by e.g. the discontinuous conduction mode (DCM), which
arises when the inductor current is zero. Here, the analytic forward solver approach provides
the additional needed state for DCM. The initial conditions of the state variables can be
expressed as it was done in the CCM example. Both models of the flyback converter can also
be combined to one model which also supports switching between CCM and DCM. The CCM
model becomes invalid when ILM 10 is negative.

Figure 7.
Comparison SQP
results and transient
simulation

Table VI.
Performance
comparison of
different solutions
methods

Method MC MC (1þ 1) ES SQP

ĵI LMj in A 2.532 2.535 2.583 2.583
#k iterations 1000 10000 712 6
CPU time in s 20.67 211.6 14.88 2.21
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4. Conclusion
The SQP method in combination with the AFSA shows that the worst-case limit converges
in a few steps even if the worst-case limit is not on the boundary of the parameters. Based on
the AFSA, it is possible to reduce a flyback converter in steady-state from a closed-loop to
an open-loop system. These results are well in line with the transient simulation results
obtained by applying AFSA to the open loop flyback converter. With respect to accuracy,
the SQP method shows similar performance to (1þ 1) ES strategy. Superior performance in
terms of total CPU timewas shown.
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