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Abstract
Purpose – The application of statistical inversion theory provides a powerful approach for solving
estimation problems including the ability for uncertainty quantification (UQ) by means of Markov chain
Monte Carlo (MCMC) methods and Monte Carlo integration. This paper aims to analyze the application of a
state reduction technique within different MCMC techniques to improve the computational efficiency and the
tuning process of these algorithms.
Design/methodology/approach – A reduced state representation is constructed from a general prior
distribution. For sampling the Metropolis Hastings (MH) Algorithm and the Gibbs sampler are used. Efficient
proposal generation techniques and techniques for conditional sampling are proposed and evaluated for an
exemplary inverse problem.
Findings – For the MH-algorithm, high acceptance rates can be obtained with a simple proposal kernel. For
the Gibbs sampler, an efficient technique for conditional sampling was found. The state reduction scheme
stabilizes the ill-posed inverse problem, allowing a solution without a dedicated prior distribution. The state
reduction is suitable to represent general material distributions.
Practical implications – The state reduction scheme and the MCMC techniques can be applied in
different imaging problems. The stabilizing nature of the state reduction improves the solution of ill-posed
problems. The tuning of theMCMCmethods is simplified.
Originality/value – The paper presents a method to improve the solution process of inverse problems
within the Bayesian framework. The stabilization of the inverse problem due to the state reduction improves
the solution. The approach simplifies the tuning of MCMCmethods.

Keywords Inverse problems, Bayesian statistics, State reduction, Statistical solution

Paper type Research paper

1. Introduction
Inverse problems are referred to as highly dimensional and ill-posed estimation problems
(Tarantola, 2004), where information about a state f should be inferred from noisy
measurements ~d 2 RM . In electrical engineering the inverse problems of electrical impedance
tomography (EIT) (Holder, 2005), electrical resistivity tomography (ERT) (Scott and McCann,
2005) and electrical capacitance tomography (ECT) (Jaworski and Dyakowski, 2001) form
prominent inverse problems. In ECT the spatial dielectric material distribution has
to be estimated from electrical measurements. A common approach is to use the discretization
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D : f ´ x, yielding to the state vector x [ RN, which has to be estimated. The ill-posed nature
makes the solution of inverse problems a hard problem. A root cause for the ill-posed nature can
be found by the fact, that for many ill-posed problems the number of unknowns N exceeds the
number of measurementsM by far. The stable solution of ill-posed inverse problems requires the
incorporation of prior knowledge (Kaipio and Somersalo, 2005) or the application of regularization
techniques (Vogel, 2002). The distinction between prior knowledge and regularization is made
between thefields of statistical inversion theory and deterministic inversion theory.

Statistical inversion theory is based on a probabilistic modeling approach of the
underlying measurement process (Watzenig and Fox, 2009). All variables are considered to
be multivariate random variables, which are modeled by means of probability density
functions (pdfs). Specifically, the prior distribution p (x) and the likelihood function

p ~d jx
� �

have to be formed. The likelihood function p ~d jx
� �

is formed from a noise model

and a model about the measurement process P : f 7!~d , which we refer to as forward map

F(x). The posterior distribution p xj~d
� �

/ p ~d jx
� �

p xð Þ is formed using Bayes law.
Given this formulation different estimation algorithms can be designed like the maximum a
posteriori (MAP) estimator. The MAP estimate is given at the maximum of the posterior
distribution. It can be computed by means of numerical optimization schemes. A review for
different reconstruction methods is given in (Cui et al., 2016).

Figure 1 sketches the Bayesian scheme. The photographes included in Figure 1 depict an
actual ECT reconstruction experiment. Given the true material distribution x in the image
space, the measurement process provides the data d [ RM in the data space, which is
corrupted bymeasurement noise leading to the data ~d . The gray ellipse around ~d in Figure 1
illustrates the uncertainty of the measurement process in the data space. Subsequently also
the reconstruction result exhibits a certain degree of uncertainty. This uncertainty is
illustrated by the gray ellipse in the image space. For the characterization of the solution
space and uncertainty quantification (UQ), estimators like the conditional mean xCM = E(X)
or the variance RX = E ((X – lCM)(X – xCM)

T) can be used, where E(·) denotes the expectation
operator. Hereby the posteriori distribution p xj~d

� �
has to be estimated (Fox and Nicholls,

1997). The evaluation of the expectation can be done bymeans ofMonte Carlo integration:

E f Xð Þ� �
¼

ð
RN

f xð Þp xð Þdx � 1
N

XN
i¼1

f xið Þ; (1)

where xi are samples from a Markov chain generated by a Markov chain Monte Carlo
(MCMC) technique (Watzenig and Fox, 2009; Kaipio et al., 2000). The Metropolis Hastings

Figure 1.
Illustration of the
data flow in inverse
problems
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algorithm (MH) (Hastings, 1970) and the Gibbs sampler (Geman and Geman, 1984) are two
MCMC methods, which will also be used in this work. MCMC methods provide a numerical

representation of p xj~d
� �

by simulating a Markov chain. The application of MCMC
methods for large-scale inverse problems is considered computational expensive, in
particular for computational intensivemeasurement problems (Brooks et al., 2011).

Model reduction techniques are an approach to reduce the computational load (Kaipio
and Somersalo, 2007). Hereby the computational expensive forward map is replaced by an
approximated forward map (Lipponen et al., 2013). A different strategy is the reduction of
the problem dimension by means of a state reduction scheme (Neumayer et al., 2017). The
full state vector x is constructed by a projection PNR : xR 7!x, where the reduced state
vector xR 2 RNR is of significant lower dimension than the full state vector x. In Neumayer
et al. (2017), the construction of a linear state reduction scheme, i.e. x ¼ PNRxR, using prior
knowledge is presented.

In this paper, we present the use of a state reduction within MCMC methods. We show
the versatile applicability of the state reduction scheme for general distributions and present
the construction of an MH-algorithm and a Gibbs sampler. We further demonstrate the
stabilizing effect of the state reduction, i.e. we will demonstrate the capability of image
reconstruction without a dedicated prior distribution.

This paper is structured as follows. In Section 2, we briefly introduce the inverse problem
of ECT and discuss the applied state reduction scheme. We show the general applicability of
the technique and address the stabilizing properties of the state reduction. In Section 3, we
show two MCMC algorithms and discuss the adoptions for the inverse problem of ECT. In
Section 4, we present results of a numerical study.

2. Inverse problem of electrical capacitance tomography and state reduction
2.1 Electrical capacitance tomography
In this section, we briefly discuss the ECT measurement process, leading to the ECT forward
map F, which simulates the measurement process. Figure 1 includes a sketch of an ECT
sensor. The sensor consists of a nonconductive pipe, withNelec electrodes mounted at the outer
circumference. The sensor is shielded by a screen. The capacitances between the electrodes
depend on the dielectric material distribution f inside the pipe, which is referred to as region
of interest X ROI. The capacitances between the electrodes can be determined by applying an
AC signal to an electrode and measuring the displacement currents at the remaining
electrodes. This process is repeated for all electrodes, leading to M ¼ Nelec Nelec�1ð Þ

2 independent
measurements. We denote the measurement process by P : f 7! ~d , where ~d 2 RM are the
noisy measurements in the data space. The simulation of the measurement process is based on
solving the potential equation r · (« 0« rrV) = 0 for the corresponding boundary conditions
and computing the capacitances. V is the scalar potential and «0« r is the permittivity. In this
work we will use the finite element method for the simulation. It is common to use the finite
elements inside XROI for the discretization D: f ´ x. Calibration strategies are used to
compensate model errors between the forwardmap F and themeasurement process P.

2.2 Prior-based state reduction
This subsection briefly discusses the construction of the prior based state reduction of form
x = PxR, where xR is the reduced state vector. Detailed information can be found in
Neumayer et al. (2017). The construction of the state reduction is based on the concept of a
sample based prior distribution, where samples for possible material distributions are
generated by means of a random number generator. Figure 2 depicts exemplary samples.
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Hereby Gaussian bumps have been placed arbitrarily inside X ROI. Computing a sufficiently
large number of these samples and storing them by means of the matrix Xpattern gives a
sample based representation of the prior distribution. Then the matrix P can be constructed
by P ¼ 1 u1 u2 . . . uNR�1

� �
, where the vectors ui are the column vectors of the

matrix U from the singular value decomposition (SVD) U RVT = XPattern of the matrix
XPattern. NR denotes the dimension of the state reduction. Using this scheme, the state
reduction is typically capable to reduce the dimension of the estimation problem to about 10
per cent of the original size (Neumayer et al., 2017). This has been found by an analysis of
error due to the approximation and by the trend of the singular values of the SVD. However,
in a visual comparison often a smaller state reduction can be found to be sufficient.

2.3 State reduction for different distributions
A concern with respect to the application of the state reduction is the capability to represent
material distributions, which differ from the prior distribution used for the creation of the
state reduction. Figure 3 presents an exemplary study. Figure 3(a) shows four material
distributions, which deviate from the prior distribution of Gaussian bumps. This holds
particularly for the third and the fourth distribution, but all samples also have sharp
boundaries, which is a significant deviation from the Gaussian bumps. Figure 3(b) depicts a
constraint least squares approximation of the distribution using the state reduction
constructed from Gaussian bumps. The state reduction is capable to represent the material
distributions with sufficient accuracy. We hereby refer to the typical image quality of soft
field tomography systems, e.g. see Figure 1. The dimensions of the full state vectors for this
example is N=606. The dimension of the reduced state vector is 6 per cent of the dimension
of the full state vector. Hence, even a better reduction ratio is possible.

2.4 Stabilization of inverse problem
A remarkable feature of the state reduction is depicted in Figure 4(a). We computed the
reduced representation for the samples of the matrix XPattern and formed a Gaussian
summary statistics by means of the mean vector lXR

and the covariance matrix

RXR ¼ CRXR
CT

RXR
. CRXR

is the Cholesky decomposition of RXR . Then we created random

samples for the full state vector x by x ¼ P lxR
þ CRXR

v
� �

, where v is a random vector of

corresponding dimension, which is drawn for a standardmultivariate Gaussian distribution,
i.e. v !N(0, I). Figure 4(a) depicts four samples produced by this scheme. We added a
positive constant to fix the lower bound to 1 for each sample. For comparison Figure 4(a)
depicts samples, which have been created by the same procedure, but for the full state
vector. The samples depicted in Figure 4(a) show feasible material distributions, whereas
the samples depicted in Figure 4(b) show no structure within the material distribution.

Figure 2.
Samples created
using the Gaussian
summary statistic
over a reduced state
representation
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The state reduction scheme carries the intrinsic information about the material distribution.
Hence, the application of the state reduction incorporates prior information, but by means of
the matrix P instead of a dedicated prior p (PxR). Hence, the state reduction stabilizes the
inverse problem. We will use this in our numerical study, where we do not maintain a
dedicated prior distribution for the solution of the inverse problem.

3. Markov chain Monte Carlo methods for Bayesian inference
In this section, we briefly address two MCMC algorithms and discuss the adoptions for the
inverse problem of ECT, which are the Metropolis Hastings (MH) algorithm (Hastings, 1970)
and the Gibbs-sampler (Geman and Geman, 1984). The purpose of MCMC methods is to

create samples of a target distribution p xj~d
� �

by constructing a Markov chain X. Then
the samples can be used to evaluate expectations by means of Monte Carlo integration given
by equation (1).

3.1 Metropolis Hastings algorithm
TheMH-algorithm is given by:

(1) Pick the current state x =Xn of the Markov chain.
(2) With proposal density q(x, x0) generate a new state x0.

(3) Compute the acceptance probability a ¼ min 1; p x0 j~dð Þq x0;xð Þ
p xj~dð Þq x;x0ð Þ

� 	
:

(4) With probability a accept x0 andXnþ1 = x0, otherwise reject x0 and setXnþ1 = x.

Figure 3.
Study for the

approximation
behavior of the state
reduction scheme for

material
distributions, which
do not belong to the
prior distribution

used for the
construction of the

state reduction
scheme
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(a)

(b)

Notes: (a) True material distributions; (b) approximation of
true distribution by means of the state reduction
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TheMH-algorithm is simple to implement, yet it is known to have drawbacks for large-scale
inverse problems. For every proposal x0, the forward map has to be evaluated, which causes
high computational costs, in particular when a large number of proposals are rejected.
Researchers have stated acceptance rates of 20 to 30 per cent as typical values for large-scale
inverse problems (Kaipio et al., 2000). For the proposal generation using the state reduction
scheme, we maintain the column vectors of the matrixP, which leads to:

x0 ¼ x þ api (2)

where a is a scaling variable. We decided to draw a from an uniform distribution of the
feasible support of a in this work, which can be considered the most simple form of a
proposal generator. The use of the state reduction within the MH-algorithm has no
countable benefit on the computational effort with respect to an MH-algorithm, which uses
the full state vector. Yet the results will show, that the proposal generation scheme already
leads to a significant high acceptance rate, which leads to an improvement of the
MH-algorithm bymeans of its statistical efficiency.

3.2 Gibbs sampler
The Gibbs sampler is given by:

(1) Pick the current state x =Xn from the Markov chain.
(2) For every element i of the vector x:

Figure 4.
Samples created by
means of a Gaussian
summary statistic
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(b)

Notes: (a) Samples created using the Gaussian summary
statistic over a reduced state representation; (b) samples
created using the Gaussian summary statistic over the full
state representation
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(3) Set xi of x as independent variable, while all other elements are fixed; and
(4) Draw xi / p xij~d ; x1; x2; . . . ; xi�1; xiþ1; . . . ; xN

� �
from the conditional distribution.

(5) SetXnþ1 = x.

While in the MH-algorithm proposal candidates can be rejected, the Gibbs sampler draws a
sample from the conditional distribution in every iteration. Executing the Gibbs sampler
over all elements of the state vector is referred to as a scan, which then produces a new
sample for the Markov chain. Using the relation (2), the conditional distribution

p x þ apij~d
� �

has to be evaluated for support points within the feasible range of a. This
requires a simulation of the forward map for each support point, which results in the high
computational costs of the algorithm. The application of the state reduction scheme enables
a reduction of the computational costs by the same ration as the state reduction.

3.2.1 Sampling from the conditional distribution. Given the non-parametric
representation of the conditional distribution a sample has to be generated for the scaling
variable a. Figure 5 depicts some ensembles of the logarithm of the conditional distribution
for our later problem. Note, that the individual distributions have been scaled to be depicted
within a single plot. For each trendNcond. s. = 10 support points have been evaluated.

Drawing a sample from the non-parametric representation can be done by different
schemes like inverse transform sampling, the MH-algorithm, or dedicated sampling
techniques like rejection sampling (Richardson et al., 1996). The later schemes require
additional computational effort. In inverse transform sampling the scaling parameter a is
computed by solving:

ða
amin

p x þ tpij~d
� �

dt ¼ u (3)

For a, where u is drawn from the distribution u(0,1). The application of inverse transform
sampling requires the evaluation of the integral of the conditional distribution. Considering
the non-parametric description of the conditional distributions, the accurate evaluation of
inverse transform sampling is critical. Considering the trends of the logarithm of the
conditional distribution as depicted by the ensembles in Figure 5, we propose to use a

Figure 5.
Ensemble of different

conditional
distributions
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quadratic approximation for the logarithm of the conditional distribution. The parameters
for the quadratic approximation can be estimated by means of a least squares fit using the
pseudo-inverse. Given the approximation, the relation:

ð
e�ax2þbxþcdx ¼

ffiffiffiffi
p

p
2

ffiffiffi
a

p e
b2
4aþcerf

ffiffiffi
a

p
x� b

2
ffiffiffi
a

p
� �

(4)

can be used. This approach allows an analytic evaluation of inverse transform sampling.
Figure 6 illustrates the feasibility of the approach for a single conditional distribution. The
upper plot in Figure 6 depicts the logarithm of the conditional distribution, which is
approximated by the quadratic function. The lower plot in Figure 6 depicts the actual
conditional distribution and a histogram of samples generated by the scheme. The proposed
algorithm generates samples for the conditional distribution. The advantage of this
approach is the reduced numerical effort. Studies of the behavior of the conditional
distribution in the later numerical studies showed, that the quadratic approximation is
possible for more than 99 per cent of the conditional distributions. This can be tested by
means of the signs of the coefficients of the quadratic approximation. In cases where the
approach fails we applied a one-dimensional MH scheme to compute a sample.

4. Numerical study
In this section, we present reconstruction experiments for material distributions depicted in
Figure 3(a). We simulate an ECT-sensor with Nelec = 16 electrodes, which leads toM = 120
independent measurements. For the reconstruction, we use a mesh with aboutN = 606 finite
elements within the ROI. The state reduction is again of dimension NR = 36. The simulation
data ~d have been generated on a mesh with aboutN=2000 finite elements within the ROI to
avoid inverse crime data. The simulated data have been corrupted by additive i.i.d. white
Gaussian noise. The signal to noise ratio (SNR) had a lower value of approximately 50 dB.
The likelihood function is given by:

p ~d jxR

� �
/ e �1

2 F PxRð Þ�~dð ÞTR�1
V F PxRð Þ�~dð Þ

� �
; (5)

Figure 6.
Conditional sampling
using inverse
transform sampling
and a quadratic
approximation
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where RV is the covariance matrix of the additive measurement noise. Due to the state
reduction we use no further prior distribution other than an indicator function p (xR) = I
(PxR), where we set the lower bound of the material distribution to 1 and the upper bound to
3. The indicator function is used to determine the support for the scaling variable a in the
update scheme given by equation (2). To speed up the convergence we used a linearized
MAP estimator to initialize theMarkov chain.

4.1 Reconstruction results
Figure 7 depicts the estimated mean and the standard deviation for the reconstruction
experiments, which have been computed by means of Monte Carlo integration from the
Markov chains. Data from a burn in phase have been neglected for the evaluation. The
results depicted in Figure 7 are the results obtained for the Gibbs sampler. The results for
the MH-algorithm show no difference. Figure 7(a) shows the estimated conditional mean;
Figure 7(b) shows the uncertainty of the results by means of the standard deviation. All
material distributions can be reconstructed using the proposed approach. The standard
deviation gives information about the uncertainty of the estimated results. It can be seen
that the uncertainty increases at the center of the pipe and the boundaries of the objects.
This behavior corresponds to the soft field nature of the electric field used for sensing in
ECT. The good reconstruction behavior proofs the stabilizing properties of the state
reduction, as the inverse problem is solved without a dedicated prior.

4.2 Analysis of the Markov chains
In this subsection, we analyze the behavior of the Markov chains. Figure 8 depicts the
logarithm of the posteriori distribution for the MH-algorithm and the Gibbs sampler. From

Figure 7.
Estimated mean and
standard deviation

for the reconstruction
experiments
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the trends, it can be seen, that both algorithms reach convergence after a short burn in
phase. This can be seen by the noise-like behavior of the signals. For the MH-algorithm, we
obtained a typical acceptance rate in the range of 75 per cent. This is remarkable considering
the simple proposal generator used for this reconstruction experiment.

For a more detailed analysis, we studied the correlation behavior of the Markov chains
using the method presented in (Wolff, 2004). Figure 9 depicts an exemplary analysis result
for the second reconstruction experiment, using the Gibbs sampler. We evaluated the
integrated auto correlation time (IACT) t IACT, which is a measure for the number of
iterations to obtain an independent sample. As depicted in Figure 9, the IACT for the Gibbs
sampler is t IACT,Gibbs = 25. For the MH-algorithm, we obtained an IACT of t IACT,MH = 832.
For the MH-algorithm the IACT corresponds to the number of forward map evaluations NF
to obtain an independent sample. For the Gibbs-sampler the number of forward map
evaluations NF is given by FF = NR · t IACT,Gibbs · Ncond.s, where Ncond.s. is the number of

Figure 9.
Statistical analysis of
the Markov chain for
the Gibbs sampler for
the secondmaterial
distribution
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Figure 8.
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distribution) for the
MH-algorithm and
the Gibbs sampler
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support points for the conditional sampling. The numbers reveal the computational costs of
employing MCMC methods. Table I lists the IACTs for the different reconstruction
experiments. Yet the good convergence of the chains indicates the benefit of the state
reduction. Assuming the same IACT the computational costs for a Gibbs sampler, which
operates on the full state space is increased by the ratio of N/NR. The computational
overhead of both algorithms is minimal due to the simple sampling schemes, which holds in
particular for the Gibbs sampler, where the inverse transform sampling is applied.

5. Conclusion
In this work, we demonstrated the application of a state reduction scheme within MCMC
algorithms for the statistical solution of inverse problems. The state reduction is constructed
by means of a sampling based prior. We demonstrated the versatility of the state reduction
for different material distributions. We presented the implementation of a MH-algorithm
and a Gibbs sampler using the state reduction and showed the successful reconstruction of
different material distribution, including an uncertainty quantification. For the
MH-algorithm, the state reduction allows the implementation of a simple proposal generator
leading to high acceptance rates. For the Gibbs sampler, we presented an inverse transform
sampling scheme to sample from the conditional distribution. A remarkable property of the
state reduction is its stabilizing capability for the solution of ill-posed inverse problems,
which we demonstrated by neglecting a dedicated prior in our reconstruction experiments.
The results were presented for the inverse problem of ECT, yet the procedure can be applied
for other inverse problems.
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