Achieving PMC boundary conditions through metamaterials

Alessio Monti (Department of Applied Electronics, “Roma Tre” University, Rome, Italy)
Luca Scorrano (Department of Applied Electronics, “Roma Tre” University, Rome, Italy)
Simone Tricarico (Department of Applied Electronics, “Roma Tre” University, Rome, Italy)
Filiberto Bilotti (Department of Applied Electronics, “Roma Tre” University, Rome, Italy)
Alessandro Toscano (Department of Applied Electronics, “Roma Tre” University, Rome, Italy)
Lucio Vegni (Department of Applied Electronics, “Roma Tre” University, Rome, Italy)



The purpose of this paper is to show how metamaterials with extreme values of permittivity and permeability, may be effectively used to design artificial magnetic conductors (AMC) at a given frequency. In particular, this paper theoretically determines, for the different polarizations of the incidence field, the conditions under which metamaterials can behave as an AMC.


In order to find out the required values of the constitutive parameters, this paper has done a theoretical analysis based on the transmission-line theory. The obtained analytical reflection coefficient has been particularized for the different possible polarizations of the incidence field in order to find the constitutive parameters values that this paper needs for the AMC behavior.


Depending on the polarization of the field, it is shown that different values of the constitutive parameters are needed to get AMCs. In particular, it is shown that in the case of TEM and TE polarizations, a large value of the permeability is enough to obtain an AMC boundary condition. In the case of the TM polarization, instead, the AMC boundary condition is effectively achieved by using a material with vanishing permittivity. The role of the permittivity in the three polarizations is discussed. Finally, possible implementations and applications at microwave and optical frequencies are presented.


The idea of using miniaturized inclusions to obtain AMCs is not completely new. However, to the authors' best knowledge, a complete and rigorous theoretical analysis showing the capabilities and the limits of this approach has not yet been presented in the open technical literature.



Monti, A., Scorrano, L., Tricarico, S., Bilotti, F., Toscano, A. and Vegni, L. (2013), "Achieving PMC boundary conditions through metamaterials", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 32 No. 6, pp. 1876-1890.

Download as .RIS



Emerald Group Publishing Limited

Copyright © 2013, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.