Experimental verification of metamaterial loaded small patch antennas

Kamil Boratay Alici (Department of Physics, Nanotechnology Research Center, Bilkent University, Ankara, Turkey and Institute of Fusion Studies, The University of Texas at Austin, Austin, Texas, USA)
Mehmet Deniz Caliskan (Nanotechnology Research Center, Bilkent University, Ankara, Turkey)
Filiberto Bilotti (Department of Applied Electronics, “Roma Tre” University, Rome, Italy)
Alessandro Toscano (Department of Applied Electronics, “Roma Tre” University, Rome, Italy)
Lucio Vegni (Department of Applied Electronics, “Roma Tre” University, Rome, Italy)
Ekmel Ozbay (Department of Physics, Department of Electrical and Electronics Engineering, Nanotechnology Research Center, Bilkent University, Ankara, Turkey)



Metamaterial unit cells composed of deep subwavelength resonators brought up new aspects to the antenna miniaturization problem. The paper experimentally demonstrates a metamaterial-inspired miniaturization method for circular patch antennas. In the proposed layouts, the space between the patch and the ground plane is filled with a proper metamaterial composed of either multiple split-ring or spiral resonators (SRs). The authors have manufactured two different patch antennas, achieving an electrical size of λ/3.69 and λ/8.26, respectively. The paper aims to discuss these issues.


The operation of such a radiative component has been predicted by using a simple theoretical formulation based on the cavity model. The experimental characterization of the antenna has been performed by using a HP8510C vector network analyzer, standard horn antennas, automated rotary stages, coaxial cables with 50 Ω characteristic impedance and absorbers. Before the characterization measurements we performed a full two-port calibration.


Electrically small circular patch antennas loaded with single layer metamaterials experimentally demonstrated to acceptable figures of merit for applications. The proposed miniaturization technique is potentially promising for antenna applications and the results presented in the paper constitute a relevant proof for the usefulness of the metamaterial concepts in antenna miniaturization problems.


Rigorous experimental characterization of several meta material loaded antennas and proof of principle results were provided.



This work is supported by the European Union under the projects EU-PHOME, and EU-ECONAM, and TUBITAK under Project Nos, 107A004, and 107A012. One of the authors (Ekmel Ozbay) also acknowledges partial support from the Turkish Academy of Sciences.


Boratay Alici, K., Deniz Caliskan, M., Bilotti, F., Toscano, A., Vegni, L. and Ozbay, E. (2013), "Experimental verification of metamaterial loaded small patch antennas", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 32 No. 6, pp. 1834-1844. https://doi.org/10.1108/COMPEL-10-2012-0276

Download as .RIS



Emerald Group Publishing Limited

Copyright © 2013, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.