TY - JOUR AB - Purpose This paper aims to the increasing need for high-speed low-power data transmissions over frequency-selective fading channels has drawn attention to suggest dual-carrier modulation (DCM) for multiband orthogonal frequency division multiplexing (OFDM) transceivers for ultra wideband (UWB) wireless personal area network (WPAN).Design/methodology/approach Under frequency-selective fading channel conditions, the decoder is not sufficient enough to decode the transmission bits of severely attenuated data tones. Hence, the authors suggest DCM for a multiband OFDM transceiver because of its multiple capability of providing both frequency diversity and coding gain. It also resulted in low bit-error-rate (BER) at a given signal- to-noise ratio when compared to conventional multiband OFDM system. To achieve an optimised BER, DCM transforms four re-ordered bits into two quaternary phase shift keying symbols and further transforms to two 16-quadrature amplitude modulation-like (16-QAM) symbols with a suitable mapping technique, and at the receiver end, they are decoded with maximum likelihood decision rule. After performing the transformation, the outage probability and average BER expressions are derived to analyse the system performance.Findings DCM is suitable for high data rate transmission and is immune to frequency-selective fading. The outage and BER performance outstands over conventional multiband OFDM transceiver because of the inclusion of DCM mapping.Practical implications It is widely used in WPANs such as high definition multimedia interface and wireless universal serial bus.Originality/value This paper derives novel closed-form outage probability and a tight upper bound on average BER expressions for DCM-based multiband OFDM UWB transceiver over frequency-selective Nakagami-m fading channels for any arbitrary value of m. For this, moment-generating function of sum of squared, independent and identically distributed (i.i.d.) Nakagami-m random variables are used. Further, the system performance is also validated for the case of exponential decaying power delay profile, and the simulation results are provided to check the accuracy of the derived expressions. VL - 36 IS - 1 SN - 0332-1649 DO - 10.1108/COMPEL-03-2016-0097 UR - https://doi.org/10.1108/COMPEL-03-2016-0097 AU - Kondoju Sai Krishna AU - Mani V.V. PY - 2017 Y1 - 2017/01/01 TI - Outage and BER analysis of dual-carrier modulation over frequency-selective Nakagami-m fading channels T2 - COMPEL - The international journal for computation and mathematics in electrical and electronic engineering PB - Emerald Publishing Limited SP - 90 EP - 107 Y2 - 2024/04/23 ER -