To read the full version of this content please select one of the options below:

Using look-ahead plans to improve material flow processes on construction projects when using BIM and RFID technologies

Qian Chen (Department of Civil, Environmental and Geomatic Engineering, ETH Zurich Campus Honggerberg, Zurich, Switzerland)
Bryan T. Adey (Department of Civil, Environmental and Geomatic Engineering, ETH Zurich Campus Honggerberg, Zurich, Switzerland)
Carl Haas (Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Canada)
Daniel M. Hall (Department of Civil, Environmental and Geomatic Engineering, ETH Zurich Campus Honggerberg, Zurich, Switzerland)

Construction Innovation

ISSN: 1471-4175

Article publication date: 9 June 2020

Issue publication date: 29 June 2020

Abstract

Purpose

Building information modelling (BIM) and radio frequency identification (RFID) technologies have been extensively explored to improve supply chain visibility and coordination of material flow processes, particularly in the pursuit of Industry 4.0. It remains challenging, however, to effectively use these technologies to enable the precise and reliable coordination of material flow processes. This paper aims to propose a new workflow designed to include the use of detailed look-ahead plans when using BIM and RFID technologies, which can accurately track and match both the dynamic site needs and supply status of materials.

Design/methodology/approach

The new workflow is designed according to lean theory and is modeled using business process modeling notation. To digitally support the workflow, an integrated BIM-RFID database system is constructed that links information on material demands with look-ahead plans. The new workflow is then used to manage material flows in the erection of an office building with prefabricated columns. The performance of the new workflow is compared with that of a traditional workflow, using discrete event simulations. The input for the simulations was derived from expert opinion in semi-structured interviews.

Findings

The new workflow enables contractors to better observe on-site status and differences between the actual and planned material requirements, as well as to alert suppliers if necessary. The simulation results indicate that the new workflow has the potential to reduce the duration of the material flow processes by 16.1% compared with the traditional workflow.

Research limitations/implications

The new workflow is illustrated using a real-world-like situation with input data based on expert opinion. Although the workflow shows potential, it should be tested on a real-world site.

Practical implications

The new workflow allows project participants to combine detailed near-term look-ahead plans with BIM and RFID technologies to better manage material flow processes. It is particularly useful for the management of engineer-to-order components considering the dynamic site progress.

Originality/value

The research improves on existing research focused on using BIM and RFID technologies to improve material flow processes by showing how the workflow can be adapted to use detailed look-ahead plans. It reinforces data-driven construction material management practices through improved visibility and reliability in planning and control of material flow processes.

Keywords

Acknowledgements

The authors thank SBB (Swiss Federal Railways) and Implenia for providing the 3D models used in this study.

Citation

Chen, Q., Adey, B.T., Haas, C. and Hall, D.M. (2020), "Using look-ahead plans to improve material flow processes on construction projects when using BIM and RFID technologies", Construction Innovation, Vol. 20 No. 3, pp. 471-508. https://doi.org/10.1108/CI-11-2019-0133

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited