To read the full version of this content please select one of the options below:

Exploiting digitalization for the coordination of required changes to improve engineer-to-order materials flow management

Qian Chen (Department of Civil, Environmental and Geomatic Engineering, ETH Zurich Campus Honggerberg, Zurich, Switzerland)
Bryan T. Adey (Department of Civil, Environmental and Geomatic Engineering, ETH Zurich Campus Honggerberg, Zurich, Switzerland)
Carl T. Haas (Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Canada)
Daniel M. Hall (Department of Civil, Environmental and Geomatic Engineering, ETH Zurich Campus Honggerberg, Zurich, Switzerland)

Construction Innovation

ISSN: 1471-4175

Article publication date: 5 April 2021

Abstract

Purpose

The dynamic nature and complexity of construction projects make it challenging to ensure that the engineer-to-order (ETO) materials supplied onsite match changing needs. The quick and efficient communication of required changes in material fabrication, delivery and use, due to changes in the design and construction schedules, is needed to address the challenges. This study aims to provide a novel integrated management framework with its embedded informatics to help major stakeholders efficiently absorb agility during communication to deal with required changes and improve workflows.

Design/methodology/approach

An integrated management framework is developed that integrates the milestones in look-ahead plans and structured iterative processes for major supply chain stakeholders to quickly disseminate information emanating from changes in design, schedules, production and transportation. A prototype system is devised including the informatics to support the framework, which consists of BIM-RFID functional modules and a central database and uses a client-server architecture. The usefulness of the prototype is illustrated using a construction of part of a fictive but realistic high-rise building.

Findings

The integrated management framework with the informatics provides major stakeholders with the ability to coordinate their activities efficiently and stimulate their agility (measured by process time) in planning and controlling material information. Although only a fictive example was used, it is shown that the use of the system is likely to result in a substantial reduction in the time required to deal with required changes when delivering ETO materials onsite (by 18% in the example).

Research limitations/implications

The functionalities of the prototype system can be easily scaled up to coordinate changes in the design and scheduling of other types of materials. More functional developments are needed to show the extent of the possible improvement for entire construction projects. Future work should focus on investigating the possible improvements for other types and sizes of construction projects, and eventually in real-world construction projects.

Practical implications

By fitting the look-ahead plans into structured iterative processes through digital data sharing, stakeholders increased their capability to quickly capture required change information and resolve associated problems. This is particularly useful for the management of ETO supply chain processes, where prefabricated elements such as ductwork, plumbing, and mechanical systems typically have to be modified because of last-minute design and schedule changes.

Originality/value

Unlike traditional information technology (IT) based supply chain management practices, this research is characterized by a process-centered management framework that provides explicit decision points over iterative planning processes for major stakeholders to manage material information. The iterations through digital data sharing allow stakeholders to quickly respond to last-minute changes on site, which fundamentally achieves workflow agility in the construction supply chain context.

Keywords

Citation

Chen, Q., Adey, B.T., Haas, C.T. and Hall, D.M. (2021), "Exploiting digitalization for the coordination of required changes to improve engineer-to-order materials flow management", Construction Innovation, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/CI-03-2020-0039

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited