Discovering high-level BPMN process models from event data

Anna Kalenkova (Higher School of Economics, Faculty of Computer Science, National Research University, Moscow, Russia)
Andrea Burattin (Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark)
Massimiliano de Leoni (Eindhoven University of Technology, Eindhoven, The Netherlands)
Wil van der Aalst (RWTH Aachen University, Aachen, Germany)
Alessandro Sperduti (Department of Mathematics, University of Padua, Padua, Italy)

Business Process Management Journal

ISSN: 1463-7154

Publication date: 2 September 2019

Abstract

Purpose

The purpose of this paper is to demonstrate that process mining techniques can help to discover process models from event logs, using conventional high-level process modeling languages, such as Business Process Model and Notation (BPMN), leveraging their representational bias.

Design/methodology/approach

The integrated discovery approach presented in this work is aimed to mine: control, data and resource perspectives within one process diagram, and, if possible, construct a hierarchy of subprocesses improving the model readability. The proposed approach is defined as a sequence of steps, performed to discover a model, containing various perspectives and presenting a holistic view of a process. This approach was implemented within an open-source process mining framework called ProM and proved its applicability for the analysis of real-life event logs.

Findings

This paper shows that the proposed integrated approach can be applied to real-life event logs of information systems from different domains. The multi-perspective process diagrams obtained within the approach are of good quality and better than models discovered using a technique that does not consider hierarchy. Moreover, due to the decomposition methods applied, the proposed approach can deal with large event logs, which cannot be handled by methods that do not use decomposition.

Originality/value

The paper consolidates various process mining techniques, which were never integrated before and presents a novel approach for the discovery of multi-perspective hierarchical BPMN models. This approach bridges the gap between well-known process mining techniques and a wide range of BPMN-complaint tools.

Keywords

Citation

Kalenkova, A., Burattin, A., de Leoni, M., van der Aalst, W. and Sperduti, A. (2019), "Discovering high-level BPMN process models from event data", Business Process Management Journal, Vol. 25 No. 5, pp. 995-1019. https://doi.org/10.1108/BPMJ-02-2018-0051

Download as .RIS

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.