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Abstract

Purpose — In the present paper, the authors will discuss the solvability of a class of nonlinear anisotropic
elliptic problems (P), with the presence of a lower-order term and a non-polynomial growth which does not
satisfy any sign condition which is described by an N-uplet of N-functions satisfying the A,-condition, within
the fulfilling of anisotropic Sobolev-Orlicz space. In addition, the resulting analysis requires the development of
some new aspects of the theory in this field. The source term is merely integrable.
Design/methodology/approach — An approximation procedure and some priori estimates are used to solve
the problem.

Findings — The authors prove the existence of entropy solutions to unilateral problem in the framework of
anisotropic Sobolev-Orlicz space with bounded domain. The resulting analysis requires the development of
some new aspects of the theory in this field.

Originality/value — To the best of the authors’ knowledge, this is the first paper that investigates the
existence of entropy solutions to unilateral problem in the framework of anisotropic Sobolev-Orlicz space with
bounded domain.

Keywords Anisotropic elliptic equation, Entropy solution, Sobolev-Orlicz anisotropic spaces
Paper type Research paper

1. Introduction

Let Q be a bounded domain of RY (N >2). The aim behind this paper is the study of
boundary value problems for a class of nonlinear anisotropic elliptic equations. More
specifically, we consider the unilateral elliptical operators whose nonlinearity is given by a
vector of N-functions like
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(P) A(u) + izN;bi(x,u,Vu) =f inQ,

u>¢ a.ein Q,

N .
where (u) =3 (o:(x,u, Vu) ), is a Leray—Lions operator defined in WJIW(Q) (defined as
=1

the adherence sp:ace Cy (Q)) into its dual (see assumptions (19), (20), (21) in Section 3); M(¢) =
(My(@), . . ., Ma(®) are N-uplet Orlicz functions that satisfy A,—condition; the obstacle ¢ is a

measurable function that belongs to L*(Q) N WIIW(Q); and forthei =1,...,N, bi(x,s,&):
QX R X RY - R are Carathéodory functions (measurable with respect to x in Q for every
(s, &) in R X RY, and continuous with respect to (s, &) in R X R" for almost every x in Q) that
does not satisfy any sign condition and the growth which is described by the vector
N-function (M (@), . . ., Ma(D) (see assumption (22)). As well as f € LY(Q).

For several years great effort has been devoted to the study of nonlinear elliptic equations
with an operator which was described by polynomial growth. For example, in the classical
Sobolev space, Boccardo and Gallouét in [1], proved the existence of a weak solution of (P) in
the case ¢ = g = 0. Bénilan in [2] presented the idea of entropy solutions which were adjusted
to the Boltzmann condition. For a deeper comprehension of these types of equations in this
field, we refer the reader to [3-10] and references therein.

Next, in the Orlicz space, Benkirane and Bennouna in [11] demonstrated the existence of
entropy solutions to the following nonlinear elliptic problem:

—diva(x,u, Vu) + div(d(u)) = f,

where ¢ € (CO(R))N and f € L}€). For more results, we refer the reader to [12-24] and
references therein.

And in the anisotropic Sobolev-Orlicz space, there are few results dealing with this topic.
We will mention recent papers, and we are starting by the pertinent works of Korolev and
Cianchi [25, 26] who proved the embeddings of this space. Then, Benslimane, Aberqi and
Bennouna in [27] studied the existence and uniqueness of the solution in the following
problem in an unbounded domain

(P) Au) + Zbi(x,% Vu) = f(x) in Q,
u=0 on 0Q

o1
»; 18 a Leray-Lions operator defined from Wp(Q) into its

where A(u) = (a;(x,u, Vu))
i=1

dual, B®) = (B1(9), . . ., B;0)) are N-uplet Orlicz functions that satisfy the A,—condition, and

fori =1,...,N, bj(x,u, Vi) : @ X R X RV - Rare the Carathéodory functions that do not

satisfy any sign condition and the growth described by the vector N-function B(6). After that,

Kozhevnikova in [28] established the existence of entropy solutions in an unbounded domain

to the following problem:

i(ai(x, Vu)), = a(x,u)  nQ,
Ml(:;) =w(x) on 0g,

where Q is an arbitrary domain in RY, N >2,



ao(x,80) = ao(x,w) + b(x, ), Nonlinear

. . - , .. anisotropic
with ao(x, w) € LY(Q), the function b(x, so) satisfies the Carathéodory condition and decreases elli l?ti c
inso€R, b(x,w) = 0for all x in Q; therefore, for any x €Q, sp € R D

equations
b(x,50) (So —w) > 0.
The author supposed two other conditions: the first one is 31

sup | b(x, o) | = Gp(x) € L140e(Q),

|50 |<k

the second one, 5y > 0 such as

b(x, y+8) € LH(Q).

For more results we refer the reader to [29-32] and the references therein.

This type of operator arises in a quite natural way in many different contexts, such as the
study of fluid filtration in porous media, constrained heating, elasticity, electro-rheological
fluids, optimal control, financial mathematics and other domains, see [33-36] and the
references therein.

As far we know, no previous research has investigated the existence of entropy solutions
to unilateral problem () with the second term as an operator with growth described by an n-
uplet of N-functions satisfying the A,—condition, within the fulfilling of anisotropic Sobolev-
Orlicz space with bounded domain, the function b;(x, %, Vi) does not satisfy any sign
condition and the source fis merely integrable. Hence, motived by the aforementioned papers,
our main work is to obtain the existence Theorem for unilateral problems corresponding to
(P) via an approximation procedure and some priori estimates.

The rest of this paper is organized as follows: In Section 2, we give some definitions and
fundamental properties of anisotropic Sobolev-Orlicz spaces. In Section 3, we give our
assumptions on data and the definition of entropy solutions to (7). In Section 4, we will show
the existence of entropy solutions, with the functions b;(x, #, Vu), ¢ = 1,..., N which does
not satisfy any sign condition. Finally, in the Appendix.

2. Definitions and preliminary tools

In this section, we recall the most important and relevant properties and notations about of
anisotropic Sobolev-Orlicz space which we will need in our analysis of the problem (P).
A comprehensive presentation of Sobolev- Orlicz anisotropic space can be found in the work
of ML.A Krasnoselskii and Ja. B. Rutickii [25, 37].

Definition 1. We say that M : R* — R" is a N-function if M is continuous, convex, with

M(t)>0fort>0,@—>0 when t—»Oand@—wo when ¢ — oo.
/

This N-function M adwuts the following representation: M (t) = f 0b(s) ds, withb : R" - R"
which is an increasing function on the right with b0) = 0 in the case t > 0 and b(f) — oo when
t = oo. o ¢
Its conjugate is noted by M (t) = f o q(s) ds with q also satisfies all the properties already
quoted from b, with

M(t) =sup (ut—M(u)), t>0. M

#20

The Young’s inequality is given as follows:

Vi, p >0 tu<Mu)+M(1). ©
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Definition 2. The N-function M(t) satisfies the Ao—condition if ¢ > 0, tg > 0 such as
M2t)<cM(t) t>t. &)

This definition is equivalent to Yk > 1, 3 c(k) > 0 such as

Mkt)<c(b)M(t) for >t @

Definition 3. The N-function M) satisfies the Ao—condition as long as there exist positive
numbers ¢ > 1 and tq > 0 such as for t > tq we have

th(t) <cM(t). 5)
Also, each N-function M(t) satisfies the inequality
Mp+t)<cM(t)+cM(p) t, p>0. ©)

We consider the Orlicz space Ly/(Q) provided with the norm of Luxemburg given by

|\u\|M‘,Q=inf{k>o//9M<|”;—x)|>dxﬁl}. 0

According to [37] we obtain the inequalities

/M (O] ) <, ®

and
Il o [ M(ul) de+1 ©
Q
Moreover, the Holder’s inequality holds and we have for all # € L/€2) and v € L3;(Q)
Jue)ot) dr | <2 1wy 01 (10)

In [25, 37], if P(t) and M(f) are two N-functions such as P(f) < M(t) and meas Q < oo, then
Lp(Q) C Lp(Q). Furthermore,

lullpq<Ao (meas Q) [y o u€ Ly (Q). (11

And for all N-functions M(#), if meas Q < oo, then Lo(Q) C L[) with
[y <Ay (measQ) [ u |y o u €Ly (Q). (12)

Also for all N-functions M(?), if meas Q < oo, then Ly/(Q) c LY(Q) with
lull <Az llullya u€ Ly (Q). (13)

We define for all N-functions M;(#), . . ., Ma(t) the space of Sobolev-Orlicz anisotropic Wllw (Q)
as the adherence space C;’ () under the norm

N
el = 2 1 o 9



. . Lol .
Definition 4. A sequence { u,, } is said to converge modularly to w in W, (Q) if for some

k> 0 we have
/M<M>dx—>0 as  m— . (15)
Q k

Remark 1. Since M satisfies the Ao—condition, then the modular convergence coincides with
the norm convergence.

Proposition 1.
OM'(t) = M(M'(t)) + M(t) t>0, (16)

with M is the right derivative of the N-function M().
Proof. By (2) we take y = M'(t), then we obtain
M'(t)t <M(t) + M(M'(t)),
and by Ch. I[37] we get the result. O
Since Q is a bounded domain in R". The following Lemmas are true:

Lemma 1. [8] Forallue WLW Q) with meas Q < oo, we have

/M<|u|)dx</M |Vu|) dr,

where A = diam(Q) is the dzameter of Q.

t Tt

N-functions M*(z) defined by (M)} (2) = = [leIHD gy,
Lemma 2. [26]Let u € W}W(Q) [f

/m@ dt = o, (17)
Lt

o1
ZZ% Wi (Q) L (Q) and | u [y o <557 el g

/m@dl‘Sco7
1 t

then, Wy (Q) CLo(@) and || g <P ullyr o ith p= [0 at

Note by Ai(t) = (va 13 ® ) and we assume that f YD gt converge. So, we consider the

In the following, we will assume that for each N-function M;(z) = [, S (t) dt obeys the
further condition:

im0 _ o o1 N (18)

a—o0f >0 b( )

Remark 2. The Following function:
M) = |z|" (|lnfel| + 1),

with b > 1 check the As-condition and (18).
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3. Assumptions on data and definition of solution
Statement of the problem: Suppose they have non-negative measurable functions ¢,
¢ € LX) and positive constants  and a such as:

N

Z(Gi(xas7§) - Gi(x7s7§l))' (fz - 51,) > O: (19)

=1

Zws: EZ (1)) ), (20

N N
> loi(x,s.8) | <ay M, Mi(lg) + e(x) @1
i=1 =1
d N N
an S Ibirs.8) | < hix) + 1) > Mg, 22
i=1 i=1

with M () the complementary of M(®), h(x) € L) and / : R — R" a positive continuous
function such as: / € L}(R) N L2 (R).

3.1 Definition of entropy solutions:

Definition 5. A measurable function uis said to be an entropy solution for the problem (P), if

ue VV}W(Q) such that u > ¢ a.e. in Q and

. fﬂal-(x,u, Vu).V(u—v) dx + ZN:jéb,-(x,u, Vu). (u —v) dx

=1

+fgm. Tw(u—2C) .sgi(u).(u—v) dx

Sfrf(x).(u—v) dx YweK, NL®(Q),

o 1 .
where, K = {ue W,,(Q) suchas u>{a.e.in Q}, for me N sgm(s) = T’jf)
the truncation at height m, T,,(u) : R—> R by

4 . Main result
In this section, we will show the existence of our problem (P). We will assume that /* — fin

. N
LYQ), m — oo, | /"0 | < | ) | and for i = 1,...,N, o (.10, Vit) : (Wyy(Q)) —
. N
( WMI (Q)) being Carathéodory functions with
o’ (x,u, Vu) = oi(x, T,,(u), Vut),

and 07 (&, tyy, Vty,) : Q X R X R > R again being Carathéodory functions not satisfying
any sign condition, with



b(x,u, Vu)

0ot Vi) = T G, v

and | 6" (x,u, Vu) | = | b(x, Tpu(ue), Vie) | <m forall me N*, (23)

Consider the penalized equations:

N
m Zf -x umavum V(um_v) dx+tzl:fﬂb, (xvumyvurn)~(unz —i)) dx
+fgm.Tm(um—C)‘.sg%(um) (thy —v) dx = ff’" (it —v) dx Yo EW,,(Q).

Theorem 1. Let’s assume that conditions (19)—(22) and (18) hold true, then there exists at
least one solution of the approximate problem (Py,).

Proof. See Appendix. O
Now, we will show some results in the form of propositions that will be useful for the
demonstration of existence Theorem 2, see below.

Proposition 2. (see [27])) Suppose that conditions (19)—(22) are satisfied, and let (u,y,) bea

sequence in VOV;(Q) such as.

(@)  wy —u in VOVJIW(Q),

(b) 0" (x,um, Vi) isboundedin Ly;(Q),

(c)fg(o-’”(x,um,Vum) — 0" (X, Vi yg)) . V(ttm —uyg ) dx—>0as K > + oo (yx the

characteristic function of Qg = {x €, | Vu | < K }).
Then:

meN

M(| Vi, |)=M(|Vu|) in LY(Q).

Proposition 3. (see [31])) Let’s assume that conditions (19)—(22) and (18) hold true, then the
generalized solution of the problems (P,,) satisfies the following estimate:

/M(|VTK(um)|)$c:c(K), K >0

Proposition 4. (see [31]) Suppose that conditions (19)—(22) and (18) are satisfied, and let
(Um) en be a solution of the problem (P,,), then there exists a measurable function u such as¥v
K > 0, we have for all subsequence noted again u,,

(@) u,, > ua.ein Q,

(0) Tk () — T (u) weakly in WZIW(Q),

(€)Tg (tm) = Tr(u) strongly in W_Ml (Q).

Proposition 5. Suppose that conditions (19)—(22) and (18) are satisfied, andlet (u,,)
solution of the problem (Py,), then for any K > 0, we have

Q) o™ (x7 TK(uﬂ’l)v VTx (um)) is bounded in W}W(Q),

meN bea

@ M(| VTk(u,,) |) = M(| VTx(w) ) is strongly in L*(Q),
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AJMS Proof. 1)
29,1 Y
Ham(.% TK(Mm),VTK(um)) HMQ Z

= S o5 ), VT i) 7
=1
N

<Y [ 19Tt ) dr + o + N,
36

from Proposition 3 we obtain:

Il 0" (%, T (tn), V Tk () liz o < ¢(K) + [ @[l + N

Hence, 6”"(x, Tx(ut,,,), V Tk(u,,)) is bounded in W—( ).
2) Showing that M(|VTxk(u,,))) —» M(VTg(u)|) strongly in LYQ) that’s why,
let’s introduce the following functions of a variable K defined as 7%j(K) =
1 if|[ K | <],
0 if|K|=j+1, with 7 as a non-negative real parameter, Qx =
J+1+|K| ifj<|K|<j+1,
{x e Q| VTk(u(x)) | <K} and we note that y is a characteristic function of Q. It's clear that
Qy C Qg1 and meas(Q \Qx) — 0 since K — oo shows that the following assertions are true.

Assertion 1.

lim lim " (%, thy Vi) . Vit dx = 0.
J=ooMm=e Jr o i< K |<j+1}

Assertion 2.

Tk (,,) = T (#) modular convergence in VV}W(Q).

Proof of assertion 1. Let
v =ty + xp(G(|unl)) - T1(m — Tj(um)),

with G(s f dt as a test function in (P,,) then we get:

N

D et ) VDG ) T 0 )

i=

N
+ le fﬂb?’(x, U, Vityy) . exp(G(|tn))) . T ( — Tj(t)) de

b Tt~ 0 52y 0) DG ) Tl — Ty ) d

= fﬂf'”(x) -exp(G([un])) - T1(tm — Ti(um)) dx

by (20) and (22) we obtain:



N
Z f (%, i, Vi) . exp(G(Jttn])) - V(T2 (i — Ti(uy))) dx

=1

+fgm . Tm(”m - g)_ Sg%(um) . exp(G(WWl')) . Tl(um - ’[}(Mm)) dx
<

since, ¢ € L'@),1€ L' (R) N L=(R), exp(G(c0)) < exp( 1) bty ) andby proposition 4
we obtain

F1(x) + 1) + () (“”’)}.exp<G<\um|>>.T1<um—Tj<um>> dr,

lim Tim { P06+ h(x) + (). (”g”

m—o0 j=oo |

} . exp(G(|tm])) - T1 (b — Tj(tty)) dx = 0.

Hence,

N
im fim >~ [ G2,y Vi) . Vit di =0,
1 /@ j<fum|<j+1}

M—00 j—00 &
=
and

m m [ . T (i — &)™ - 581 () - €xD(G([t4m])) - T1 (st — Ti(tt)) dx =

m—o j>0 f o

Proof of assertion 2. Letj > K > 0, we consider

v =ty + exXp(G([tn])) - (T (tm) — Tic (w)) - s (1),

as a test function in (P,,) we obtain:

Z f (6 s Vi) -V (€xp(G([tn])) - (T () = T () - T () d
+Zf 07 (%, tn, Vi) . €xp(G([t])) - (T () — Tr (w)) . Bj(u) dx

+fgm Tt — &) .sg%(um) . exXp(G(|tm])) - (Tk () — Tic(w)) . lj(tty) dx
— [ ) exp(Glutn)) . (Tice) — Ticw) Iy (1) d,

by (20) and (22) we have:
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291,1}/[ Z f <)% P, T (Um), VI () . (VT () — VTx (1)) . exp(G(|ttm])) dxc

+fgm- Ton (um - C)_ ~Sg711(%m)exp(c(|um‘)) . (TK(MM) - TK(”)) hj(um) dx

38 H(ttn)
a

. exp(G(|tm))) - (Tx () — T (w)) . i () dx

<J 7w i)+ o0
N

1 Ty, VT () || V1) | ex0(Gll) i
i=1 '

N
—5—; f{ 0 K| i1 }01- (%, U, Vi) . Vit . | T () — T (u) | . exp(G(|t])) dx

24)

and since Tx(u,,) — Tx(u) is weakly in VV}W(Q), we have:

L1770+ 1)+ 9001 2 | exp@llunl) - (Tittn) = Tw) ) 0.

and

/Qm Tt — &)™ .sg%(um)exp( (|tm])) - (Tk () — Tic () . 1j(tt1) dx — 0,

since | 67 (%, Tjs1(tm), VI;(t,n)) | is bounded in Ly;(€2), then there exist 6™ € Ly;(Q) such
that

|6;n(x7 Y}Jrl(um), V7}+1(Mm)) | - 5171 in LM(Q)v (25)

N
Z f{QK<\um\<]+1} 07" (%, T2 (), V Tja () | .|V T () |- €xp(G(|tm])) dx

=1

HlHu Nf
=ex ( > Z { Q: K <[t |<j+1} | 07" (%, Tya (1), V Tjsa (tn)) |- |V Tk () | dx

l N
<| HLI ) Zf 0" |VTg(u)| dx =0 withm— oo,
{ QK <|um|<j+1}

=1

(26)

according to Assertion 1, we get:



f{QK<\um\<]+1} 67 (%, U, Vi) Vi, .| T () — T () | .exp(G(|ut])) dx

M-

HZHLI(R) a f o -
<K . AE® E m . N N
2K exp< ) 2 (6 kctuni 1}61 (%, sty Vi) . Vit dx — 0 with 7 — oo,

@27)

combine (24)—(27) we obtain:

Zf (0, Tr (), V T () — (x,TK(um),VTK(u))} AVTk () —VTg(u))dx—0
Wlthm—mo.
)

According to Proposition 2 we conclude that

M|V T () ) > M(|V T (1) ) in L'(R).

Proposition 6. (See [31) Suppose that the conditions (19-(22) and (18) are true, and
wWue I;V}W(Q)

o ||, j=1...,0 (29)

Ww ’
W —uin Ly(Q), (30)

with M(z) is a N-function. Let’s assume the following functions:

N .

W(x) = (o7 (x,00,Ved) — o (x,u, Vur)) V(o — )
i=1
+ ) (0] (x4, Vid) = 0 (x,u, Vi) (1 — ),
=1

j =1, --- satisfying the condition

/ W(x) dv 0, j— oo, @31)
Q

Then, there exists a sequence of natural numbers | CN such thatasj — oo, j €]
o (x,0, Vi) — o (x,u, Vu) in Ly (Q) i=1,...,N. 32)

Theorem 2. Under assumptions (19)~(22), the problem (P) has at least one entropy solution.
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AJMS Proof of Theorem 2. We divide our proof in six steps:

29,1 Step 1: A priori estimate of { u™ }. We consider the following test function:
v =ty + nexp(G(|tn|)) T1(um — Tj(tm)),

with 1 small enough, we get:

40 N
Z fﬂaj"(x, U, Vitw) . V[exp(G([tn])) T1(tm — Ti(um))] dx

N
+ Zfﬂb;”(x, U, Vi) . €xp(G(Jtm|)) T1 (e, — Ti(un)) dx

+fﬂm. Ton(tty, — &)™ .sg%(um) . exp(G([tm])) Ty (st — Ti(ttm))

<] /) exp(Gllunl)) Tyl — Ti) d,

according to (20) and (22) we obtain:

i f x U, Vum) EXP(G(WMD) VTl(um - T](um)) dx

i=

b Tt = O 58 00) DGl ]) Tt — Ty0)

<,

since £, b, ¢ € LAQ), [eL'(R)NL>(R), exp(G(+w)) Sexp( ”l”% ) and the fact
Ty, — Ti(u,n) — 0 is weakly in VOV;W(Q) as j — oo (proposition 4). We have:

720) 4 105) + 905). ) | exp(Glla ) T T .

/Q[f’"(x) W) + p(x) . ﬂ exp(G([tn])) Tyt — Ty (1)) dx—0 as m — co,

then,
N
Z f (%, U, Vi) . €xp(G(|ttm])) - VT1 () — Ti(ut) dx
=1
+fgm - Ton(tm — €)™ - 581 (tm) - €xp(G(|tn])) - T1 () — Tj(ttn) dx
<0.
Hence,

lim lim Z / 07 (X, Uy Vity,) . Vity, dx =
M=00 j—00 Q: K<y |<j+1 }



and

m—o0

lim | m. Tt — &)~ .sg%(um) dx = 0. (33)
Q

Step 2. Convergence of the gradient:

In this step we consider again the following test function:

0=ty +nexp(G(|un])) ( Tr () — T (u)) Bj(um),

1 i {Jotn| 27},
with, 7 () = 1= | T1(t = Tj(u)) | = § O if {|un|>j+1},  and
FA =] < fun| <j+1},

| Tk(ut,)) — Tk()| at the same sign when u,, €{ |u,,| > K} where j > K > 0 and 5 are small
enough, we obtain

N

Z f "y o, V) - V(€xp(G(|um|)) (T () — T () Bj(un)) dx

i=

+fgm Ty — &) .sg%(um) . exp(G(|tm|)) ( Tr(ttm) — Tk () hj(u) dx

N
+;fﬂbl’~"(x, Uy Vi) - eXp(G([tt))) ( T () — Tic(u)) i (1) d

SL/””(X) -exp(G([um|)) ( T (m) — Tk () hi(um) dx,
by (20), (22) and the fact j > K > 0 we have this:
N
Z f{‘u <) 67 (%, T (), VT () .€xp(G(|ttn)) .V (Ti (tt) — Tic () ) dx

i=1

N
+nga;"(x,um7Vum) exp(G(|tm))) - ( Tk () — T (). VIj(u) d

b T8 585 0)- 50 (Glln ). (Ttn) — Tia) ) d

<.

then, by the condltlon (¢) in proposition 4 we have Tx(u,,) — Tx(u) weakly in W (), and
since ™, h(x), ¢ € L1(Q) we get

(1) +h(x) + 6 (x). ('”M')} exp(Gtom))) (T ttm) — T (1)) T 1) i,

/ {'”(x) hx) +92). ('”’"')}.exp<G<|um|>>.<TK<um>—TK<u>>.h]-<um>dx~o, )

and
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%J}}/IS /Q . Tyt — ) 582 () -exD(G i) - (Tic (1) — T (1)) I t,) v =0,
nd

a

N
Z fgaj?’(x,um,Vum).exp(G(|um|)).(TK(um)—TK(u)).Vh]-(um)dx
42 =

N
=3 oo 0t Vi) Vit (Gl ) (T )~ T) i 36

e\ « f ,
<2K. . " .
<2K exp( = ) ; (i<onl<iv1)C (%, 8, Vi) . Vit dx—0asj— oo,

combining (34) — (36)

N
Z/{\ |<K}6;n(x’ T (tn),V T (ttm)) - €xp(G(|tm])) -V ( T () — T () ) dx <e(t,5,m),

thus,
Z/ (67 (%, T (), V T (tn)) — 07" (¢, T (), V T () ] -V ( T (1)
i=1 J/Q
N
— Tk (u)) .exp(G(|unl)) dx< —Z/Gl-”(x, T (um),V Tk (). V( Tk ()
i=1 /@

N
Ty (u)) - exp(Glln]) dx—Z/{‘ o 0 Tln). Y Ti) -9 (T

— Tx(u)).exp(G(|un|)) dx+€(i.j,m),
letting ¢, 7, m tend to infinity, we have:
N
) / (678, T (1), ¥ T (10)) — 025, T (1), ¥ T (1)) ] . ¥/ T ()
i=1 /R
— T (u)).exp(G(|um|)) dx—0asm— oo, 37)

which is implied by Proposition 2
M(|Vu,|)—=M(|Vu|) in L1 (Q). (38)

Hence, we obtain for a subsequence:

Vu,, » Vu a.ein Q. 39)

Step 3. The equi-integrability of 07" (x, w, Vit ):



In this section we will show that:
bzn (.X', U, Vum) - bi(-x, u, VM) (4())

Therefore, it is enough to show that b7 (x, #,,, Vi, ) is uniformly equi-integrable. We take the
following test function:

0
0 = s + 1 exp(Glitn])) / / I(s) ds dr,
[um| J{ |s|>] }

we obtain:

N
Z f (X Uy Vity) . V exp(G(|tt])) f‘u ‘f{ - I(s) ds dx
3 I
+;fgbi (%, tyny Vi) . exp(G(|tm])) W‘f{ |sbj}l(s) ds dx
+f m. Tty — &)™ . 581 (1) . exp(G(|u |))fO f I(s) ds dx
a m\%m L\%m m il d {557}

0
= [ /w0 e [, [ ) s d
by (20) and (22) we get:

N
a ; J‘QM( |V ) . exp(G(|n])) - f{ [ }Z(Mm) dx

0
+fgm. Ton(ttm — €)™ - 581 (tm) - €xp(G(|um])) f\u,,,\f{ ‘s|>j}l(s) ds dx

sfg [f’" + (%) + $(x) . l(|?|) } Gllun])) f\um\f{ iy ) 5

+fg¢(x) .exp(G(|um|)).f A(uy) dx,

{ lum|>7 }

which implies:

N 0
aZLM(|Vu,n\).exp(c(|um|)).1(um).;({WMdxgcl/ ) 71y
—1 Um

Therefore,

N 0
| >]

[etm]

and

0
0 Tty — ) - 5g1(16,) - €xp(G|tty, I(s) ds dv<cs, (41
< / . Tyt — )™ 52210 - exp(G([10n])) / ) /{ 9 dsdsse, @

and since / € L'(R) N L®(R) we deduce that:
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291 Jim sup Zl /{ . I([tt]) - Mi(|V ) dx =0,
by (37) and (31) we conclude (30)
Step 4. Passing to the limit
44 Let o VOlew(Q) N L>®(Q) we take the following test function:

U=ty —Nn Y}(Mﬂ’l - QD),

and [t — || @0 < |tt — @| <J. Then, {|u,, — @] <7} C{|tt]| <7+ [|@]|co} We obtain:

N N
f O 0, Vit) VTt — @) d + z_; Jo 07 (X, o, Vit - Ti (1t — @) dx

=1
] T = O 5830 T — ) ds
f fm %m - ) dx7
which implies that:

Z f (%, tpm, Vi) . VT i(yy — @) dx
i=1

N
=y f (8, Tl (), VTl () = 07 (%, Tl (), Vep) |
i=1

X VTl (n = @) - X{ psl<i} 9%

N
+ Z fgo.;n(x7 7}+\\<P\\m(um)v Vo) VTJ'JrHSOHN(”m - 9) X { jum—el<j } dx,
=1
by Fatou’s Lemma we get:

N
liminf > f 07 Tivol n), VO) Vo) (tn = @) - X -gi<iy @
=1

m—oo

N
= ngﬁi-” (6 Do (), VO) Vo) (8 = @) X jugi<jy 0%

=1

and the fact that
ZG % Tl (Um), V) (t0m) fo %, Tl (), V Ty, ()
i=1

weakly in Wlll,,(Q) And since Tj(u,, — ¢) — Tj(u — ¢) weakly in WJIW(Q), and by (39) we
obtain:

N . N .
Z/bf”(x, Uy Vity) Tj(thy — @) dx— Z/b,v(x,u, Vu) Ti(u — ¢) dx,
i=1 /Q i=1 /Q



and Nonlinear

LN Tl . o anisotropic

[0 T = o) ds— [ 1) T = 0) ds. orome

and equations

/m oty — ) 581 (1) . Tt — @) = /m Tolu—¢) sg,(u). Ty(u — ¢) dx, 45
Q Q

which completes the proof of Theorem 2.

Remark 3. For the demonstration of the uniqueness solution to this problem (P) in
unbounded domain is obtained in [31] with the operator b;(x,u, Vi) : Q X R X RY — R are
strictly monotonic, at least for a broad class of lower order term, and in [27] with the operator

bi(x,u, Vi) : QX R X RYSR for i = 1, ..., N are contraction Lipschitz continuous
Sfunctions which do not satisfy any sign condition, and
N

> [0i(x,&,VE) — 0;(x, &, VE) ] . (VE = VE) dx > 0.

i=1
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AW, (@)= (W (@)

N o
v < Au), v >= fgz<alxuVu axi—i—bi(x,u,Vu).v)dx

=1

ff f(x).v dx,

Q

and let denote L;(Q) = HQ; Ly (Q) with the norm:
N
1ol = vl v=(01...,0n) €Lz(Q).
! i=1

where M;(¢) are N-functions satisfying the A,—conditions.
2 1 . .
Sobolev-space W,,(Q) is the completion of the space Cy’ (Q).

o(x,8,&) = (01(x,8,8),...,0n5(x,5,&))

and
b(x,s,8) = (bi(x,5,8),..., by(x,5,8)).
Let’s show that operator 2 is bounded. So, for # € WM( Q), according to (9) and (23) we get:
I o, Vi) e an 50,90 o
43)
<Zf M;(o;(x,u,Vu)) dx + N
<a(Q). || M Jie+1lelhe+N.
Further, for o(x,u, Vu) € LM(Q), ve I;VJIW(Q) using Holder’s inequality we have:
9 .
<A, v>als 20w V)l g1l o )

+2|| b(x,u,Vu) HLM(Q) . ||U ||W}W(g) +¢o- ||U ||W}W(Q)

Thus, A is bounded.
And that A is coercive. So, for u € WM( )

N

< Wu),u >q = ngai(x,u,Vu). g—z dx + Z/bi(x,u,Vu).u dx
i=1 i Q

=1

—fgf(x).u dx.



AJMS Then,

29,1 < Au), u >q 1 N ou
’ > la M |—|)dx—ci—
el o Tl o P?;ﬁ (Mi>x aoe
u ou
48 4@.;J;mga;>W—km@m]
! Y M, d
N (aQ) —c). | — — ¢ —
ZHMHW%(SH (Cl( ) CZ) 12112 l( ) X —C — (1

—63].

According to (18) we have for all £ > 0, 3 oy > 0 such that:

MH%D>km<—Mﬂ—>, i=1,...,N.

2% YA

We take || uy, [y 0 > a0 i=1,...,N.
Suppose that || u, H L Oasj — oo, we can assume that:

H%WMQ+~~+H%NMﬁZN%~
According to (9) for ¢ > 1, we have:
[ | ([ ) < cM(id),

then, by (2.8) we obtain:

< A(W), ¥ >q ﬁ —6‘2 /M<‘8u >d_c_4
Wy e - Na Na
LAY — e (/W|hmﬂ w———
(@@ —c) b /W7I< i, | )M_JL
CNH%HM IMNMQ Nay
(am—@ / ( ) ¢
> ax — ——
|”§c, HMSZ Nay
Z(ﬁ(Q)—cz)k Cy

cN Nay
which shows that 9 is coercive because % is arbitrary.

And finally that 2( is pseudo-monotonic. Following up this assumption and since the space W y(Q)
is separable, then 3(##) € C° (Q) such as:



W —uin W,(Q), 45)

and !

. . o1
A') —yin (Wy,(Q)); (46)
according to (45), we have for all subsequences denoted again by «,

1o 11 g <20 FEN

() ien 15 bounded in W}M (), and since lew () is continuously and compactly injected into LA<Q)
W — u weakly in Ly (Q),
W—uaeinQ, jeN,
and according to (39), we have:
o (x,10, Vi) — o7 (x,u, Vu) a.e.in Q, j€N
and
07 (x,00, V') = 0" (x,u, Vu) a.e.in Q, j€N
and
m. Tt = &)™ sgu(e) =m. T(u =) .sg1(u) ae.inQ, jeN
from (45) and (46), there exist 6™ in Ly;(Q) such as:
o (x, 0 , Vi) — 7", jeN 47
and there exist b in Ly(Q) such as:
b (x,0,Vid) = 0", jeN. 49)
By (33) it is clear that for any v € W}W(Q), we get:
<yv > :]l_igifgag”(x,uf,vw) Vv dx +Jlirgifgb;”(x,uj,vw) v dx
i=1 i=1

= [,&" . Vody+ [,b" v drx,

whereof:

N
limsup < 2A(:#),2¢ > = limsup {ngag”(x,uj,Vuj)Vuf dx
Jj—oo

J—=0 i1

i=

N
vimd” b;"(x,uf,w)uf'dx}gf vt | B
Jj—oo Y Q Q Q

(50)
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AJMS By (48), we have:

291 / 0" (x, 6, Vid) i dx — / " u d. 1)
Q JQ
Consequently,
N
50 limsup / o7 (x, %, Vid') Vi dx < / 5" Vid dx. (2)
Iz i1 /9 Q

On the other hand, we have by the condition of monotony:
N

> (0w, Vb ) — o' (w0, Vu)) . V(@ — u) >0,

=1

which implies
N
> (6i(x, T (i), Vi) — 0,(x, T'(i ), Vie) ) . V(i — u) >0, (53)

=1

then,

zNzal-(x, T,,(if),Vid) . Vie > zNzoi(x, T,(#),Vu) . V(i — u)

N
+ > 0%, T (), Vid) . Vu
=1
and by Step 2, we get:
N
> oi(x, Tulid), Vi) - Z 6:(x, Tu(w), Var)in Ly (<),
i=1

according to (47), we obtain:

N
hmmfZ/a;"(x,ui,Vu’) Vi dx > /5"1.Vui dx. (54)
=1 J/Q Q

Jj—o0
Therefore, from (52), we have:

hmZ/ (5., Vid). Vi ds = [ v 5)

Jj—oo
According to (49), (51) and (54) we get:
< AW, > - < yu > as j— .

Hence, from (55), and (39) we obtain:

N
limZ/(a:-"(x,MVuj) (i, Vi) V(i — u) dx = 0.
1 J/Q

J—=oo £
i=



By (49) we can conclude that Nonlinear
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