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Abstract

Purpose — The authors prove the existence and uniqueness of fixed point of mappings satisfying Geraghty-
type contractions in the setting of preordered modular G-metric spaces. The authors apply the results in solving
nonlinear Volterra-Fredholm-type integral equations. The results extend generalize compliment and include
several known results as special cases.

Design/methodology/approach — The results of this paper are theoretical and analytical in nature.
Findings — The authors prove the existence and uniqueness of fixed point of mappings satisfying Geraghty-
type contractions in the setting of preordered modular G-metric spaces. apply the results in solving nonlinear
Volterra-Fredholm-type integral equations. The results extend, generalize, compliment and include several
known results as special cases.

Research limitations/implications — The results are theoretical and analytical.

Practical implications — The results were applied to solving nonlinear integral equations.

Social implications — The results has several social applications.

Originality/value — The results of this paper are new.

Keywords Fixed point, Preordered, Modular G-metric spaces, Contractive mapping, Existence and
uniqueness, Nonlinear Volterra-Fredholm integral equations
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1. Introduction

In 1973, Geraghty [1] introduced an interesting generalization of Banach contraction
mapping principle using the concept of class S of functions, that is @ : R, — [0, 1) with the
condition that a(#,) > 1=1, — 0 where R is the set of all nonnegative real numbers and
teR, foralln e N.In 2012, Gordji ef al. [2] proved some fixed point theorems for generalized
Geraghty contraction in partially ordered complete metric spaces. Bhaskar and
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Lakshmikantham [3] proved a fixed point theorem for a mixed monotone mapping in a metric
space endowed with partial order, using a weak contractivity type of assumption. Yolacan [4]
established some new fixed point theorems in 0-complete ordered partial metric spaces. He
also remarked on coupled generalized Banach contraction mapping. Faraji et al. [5] extended
some fixed point theorems for Geraghty contractive mappings in b-complete b-metric spaces.

Furthermore, Gupta et al [6], established some fixed point theorems in an ordered
complete metric space using distance function. Chaipunya et al. [7] proved some fixed point
theorems of Geraghty-type contractions concerning the existence and uniqueness of fixed
points under the setting of modular metric spaces which also generalized the results in Gordji
et al [2] under the influence of a modular metric space.

Geraghty-type contractive mappings in metric spaces was generalized to the concept of
preordered G-metric spaces in [8] and the authors in [8] obtained unique fixed point results.
Furthermore, other interesting fixed point results in G-metric spaces can be found in [9] and
the references therein.

In 2010, an essential study by Chistyakov [10] introduced an aspect of metric called
modular metric spaces or parameterized metric space with the time parameter A (say)
and his purpose was to define the notion of a modular on an arbitrary set, develop the
theory of metric spaces generated by modulars, called modular metric spaces and, on
the basis of it, defined new metric spaces of (multi-valued) functions of bounded
generalized variation of a real variable with values in metric semigroups and abstract
CoNnvex cones.

In the same year, Chistyakov [11], as an application presented an exhausting description
of Lipschitz continuous and some other classes of superposition (or Nemytskii) operators,
acting in these modular metric spaces. He developed the theory of metric spaces generated by
modulars and extended the results given by Nakano [12], Musielak and Orlicz [13], Musielak
[14] to modular metric spaces. Modular spaces are extensions of Lebesgue, Riesz and Orlicz
spaces of integrable functions.

Modular theories on linear spaces can be found in Nakano [12, 15], where he developed a
spectral theory in semi-ordered linear spaces (vector lattices) and established the integral
representation for projections acting in this modular space.

Nakano [12] established some modulars on real linear spaces which are convex
functionals. Non-convex modulars and the corresponding modular linear spaces were
constructed by Musielak and Orlicz [13]. Orlicz spaces and modular linear spaces have
already become classical tools in modern nonlinear functional analysis.

Furthermore, the development of theory of metric spaces generated by modulars,
called modular metric spaces attracted the attention of several mathematicians (see, e.g.
[16-19)).

Okeke et al. [20] established some convergence results for three multi-valued p-quasi-
nonexpansive mappings using a three step iterative scheme. Moreover, these fixed point
results are applicable to nonlinear integral and differential equations see [19, 21-26] and the
references therein, while [7] deals with application to partial differential equation in modular
metric spaces.

In 2013, Azadifar et al [27] introduced the notion of modular G-metric space and proved
some fixed point theorems for contractive mappings defined on modular G-metric spaces.
Based on definitions given in [27], we intend to extend the fixed point theorems obtained in
[7] to preordered modular G-metric spaces in this paper. Furthermore, we prove some fixed
point theorems for Geraghty-type contraction mappings in the setting of preordered
modular G-metric spaces. We apply our results in proving the existence of a unique solution
for a system of nonlinear Volterra-Fredholm integral equations in modular G-metric
spaces, X, .
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2. Preliminaries
We begin this section with the following results and definitions which will be useful in this paper.

Theorem 2.1.
(28] If {@y },ens {Bn}pens {60} nen are three sequences in R such that

(1) lima, = limb, = ¢,
(2) for some positive integer N, a, <c, <b, for all n > N.
Then lime¢, = ¢

n—co
Definition 2.1. [29] A preorder set X is a relation < that is both,

(1) transitive i.e; x < yand y < zimplies x < zand,

(2) reflexive i.e; x < x.
A preordered set is a pair (X, <) consisting of a set X and a preorder < on X.

Remark 2.1. Ifapreorder < is antisymmetric i.e; x < yandy < ximplies x = y, then <is
called a partial order.

Definition 2.2. [1] Let S be the family of all Geraghty functions, that is functions
a: [0, o) — [0, 1) satisfying the condition {a(,)} - 1={t,} - 0.

For the rest of this paper, we denote the the class of all Geraghty functions by Sg,,. Such
Geraghty class was discussed in [7].

Definition 2.3. [7] Let S be the family of all Geraghty functions, that is functions
B; : Riu{oo} — [0, 1) satisfying the condition g;(t;) — 1= {#;} — 0 for all i.

Definition 2.4. [7] Let ¥ be the class of functions y : R — R such that the following
conditions hold;

(1)  is decreasing,

(2) w is continuous,

3 w(t) =0if and only if £ = 0.
Extension of Definition 2.2 above is as follows:

Definition 2.5. [7]Let ¥ be the class of functions y : R U{oo} = R, U{ oo} such that the
following conditions hold,;

(1) w is subadditive,

(2) w(t)is finite for 0 < ¢ < oo,

@ vlr, eV.
Definition 2.6. [27] Let X be a nonempty set, and let @® : (0, o0) X X X X X X —= [0, oo
be a function satisfying;

1) @f(x,»,2)=0forallx,yeXand 1> 0ifx =y =2,

@ of(x, x,y) >0forallx, ye X and 1 > 0 with x #3,

@) of C(x, x, ) <wf(x y,z)forallx,y,ze X and 1 > Owith z#£y,

@ of(x, v, 2) =af(x,2,5) =,z x)=...for all 1> 0 (symmetry in all three
variables),



6 of,,(x 5 2 <0f

then the function ¢ is called a modular G-metric on X.
Remarks 2.1.

(1) The pair (X, @®) is called a modular G-metric space, and without any confusion we
will take X ¢ as a modular G-metric space.
From condition (5), if @ is convex, then we have a strong form as,

(%, a, a)+a) (a,y,2),forallx, y,z,aeXand A, v > 0,

(2) CU,%_”(X,% ) (1) (x a a)+(l) (a y, )7
(3) Ifx = g, then (5) above becomes a)fﬂl(a y,2) < a)f(a, ¥, 2),
4) Condition (5) is called rectangle inequality.

Definition 2.7. [27]Let (X, »*)beamodular G-metric space. The sequence {x,, },,cy in Xis
wC-convergent to x, if it converges to x in the topology r(a)f).

A function T : X, —X,c at x€X,c is called @%continuous if w(x,, x, x) =0 then
@§(Txy, Tx, Tx) — 0, for all 2 > 0.

Remark 2.2. {x,},., modular G-converges to x as n — oo, if lim wf (%n, %m, x) = 0. That
n—oo

1s for all e > 0 there exists 7y € N such that wf (%n, X, x) < efor all n, m > ny. Here we say

that x is modular G-limit of {x,},cn

Definition 2.8. [27]Let (X, ®”) be a modular G-metric space, then {x, },n € X, is said
to be wC-Cauchy if for every e > 0, there exists #, € N such that wf (%n, X, x7) < €efor all
n,m,l>n.and A > 0.

A modular G-metric space X,¢ is said to be @®-complete if every w®-Cauchy sequence in X,
is @-convergent in X .

Proposition 2.2. [27] Let (X, ®©) be a modular G-metric space, for any x, y, x, a € X, it
follows that:

1) faf(x,y z)=0forali>0 thenx =y =z

@ of(x,y, )Swm(x x, y)—i—wm(x x, z) for all A > 0.

B @f(x, 3, ) <20 A/Z(x x,y) forall 2 > 0.

@ af(x,y,2) <af 15(%, a, z)—i—a)z/z(a,y, z) for all 1 > 0.

6) of(x,,2) < %(%/2 X, ¥, a +wf/2(x a, z)+wf/2(a ,2)) forall A > 0.
6 of(x, v, 2) < A/Z(x a, a)+a)/1/2(y a, a)+wl/2(z a, a) for all A > 0.

Proposition 2.3. [27]Let (X, ®*) be a modular G-metric space and {x, },,c, be a sequence
in X,c. Then the following are equivalent:

1) {xn}enis o

@ @f(xy, x) = 0asn — oo, i€; {x,},n converges to x relative to modular metric o (.),

-convergent to x,

@) @§ (X, Xy, x) = 0asn— oo forall 1 > 0,
@ @ (xy, x, x) > 0asn— ocoforall 2 >0,
6) @ (xm, xu, x) = 0as m, n— oo forall 2 > 0.

We give the following definition which will be useful in our results.
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Definition 2.9. An ordered modular G-metric space is a triple (X, ©®, <)where (X, ) is
a modular metric space and < is a partial order on X, . If < is a preorder on X, then
(X, °, <) is a preordered modular G-metric space.

3. Main results

Theorem 3.1. Let (X, »®)be a complete modular G-metric space with a preorder, < and a
nondecreasing self-mapping 7 : X ¢ — X, ¢ on X, ¢ such that for each 1 > 0, there is
v(4) €0, 4) such that the following conditions hold:

@)
v/(wf (Tx, Ty, Ty)) < a(v/ (wf(% 2 y)))w(wi’;m (x, 9, y))

+ﬁ(w(wf(x, ¥, y)))w(wf(m Tx, Tx)) +y(w(wf(x, ¥, y)))w(wf(v, Ty, Ty))7
3.1

where y €% and {a, 3, v} €Ss»r with a(f) + 2max{sup,soB(t), sup,er(t)} < 1, and
distinct x, y € X, c. Assuming that if a nondecreasing sequence {x, },., converges to x*, then
x, < x" foreachne N,

(2) if w is subadditive and for any x, y € X, there exists z€ X, ¢ with 2z < Tz and
w§ (z, Tz, Tz) is finite for all A > 0 such that z is comparable to both x and y. Then
T has a fixed point # € X, c and the sequence define by {7"xo},,,, converges to «.
Moreover, the fixed point of T is unique. -

Proof.Let xo € X ¢ besuch that xy < Txpandletx, = Tx,—; = T"xpforallz € N.Regarding
that 7" is nondecreasing mapping, we have that xy < Txo = x;, which implies that
x1 = Txo < Tx1 = xo. Inductively, we have

NIn<n=<..2<x1x5x1=<.... 3.2

Assume that there exists 7y € N such that x,,, = %,,+1. Since x,,, = %41 = T%,,, then x,, is
the fixed point of 7. Now suppose that x,, = x,,, 1 for all # € N, thus by inequality (3.2), we have
that

X <<X<..<x0<x,<x1=<.... 3.3)

Now for each 4 > 0,and xg < T for all # € N implies that a)f (%0, Txo, Txo) > 0. Again, let
xo € X, such that @ (xo, T, Tx) < co ¥V 1> 0.

First, we show that for all n€ N, the sequence w§(T"x9, T x, T"1xp) = 0 for all
A>0, as n—oco. Assume that, for each neN, there exists 1, >0 such that
wfﬁl(’l"'lxo, T xg, T"x9) #0. Otherwise the proof is complete. Suppose not, for each

n>1if0 < 1 < Ay, then we have that o$ (T"xo, 7" xg, T"1xy) #0. Since T"x9 < T"* 1y,
from inequality (3.1) we can see that l//(wﬁ(T”X(), Ty, T”+1x0)> < l//(a)ff(T”xo,

Ty, T"*lxo)) = w(wf(TY”l‘lxo, TT %, TT”xO)). Take x = 7" 1xy and y = T"x,,
then inequality (3.1) becomes;



y(of (T” xo, TT" %o, TT"'x0))
(0§ (T"x0, TT"x0, TT"x0))

(0 iy (T30, T, T')

w (@ (T %0, T"%0, T"0) )

T"x0, T" 50, T" )

T %o, T"x, T"%0))

T %o, T"%0, T"%0))

T"x0, T" 30, T"'x0)),

+ By (@ (T" %0, T"x0, T"x0)))
+y(w(wf(T" Yo, T"%, T"x0)))
(@% (T, T, T'x0
(0F (T" %0, T"%0, T"x0
w(wf (T lxo, T"%0, T"%))
(0F (T %0, T"x0, T"x0))
(w (¢ (T %0, T"%0, T"x0
(y (0 (T" 50, T"x0, T"x0

~
~—
~—

fi
<

(34)

=
<

+ A+ +
|
_s/—\
>0 N

=
~
>0
—_

+
~

for which we have that
l//(a)f(T”xo, 7‘1H1x07 T’Hl.%'())) Sél//(d)?(Tn_IX(), T”xo, THX()))
<y (0§ (T"'x0, T"x0, T"%0))
: (3.5)
Sl//(wf(xo, TxOv TX()))
< 00,
where
a(y(of (T 50, T, T'%0))) + B(w (@ (T %0, T"x0, T"x0)))

0=
1-— )/(l//(a)/?(T"l_l,%’o7 T”xo, T’l.?C())))

(3.6)

Therefore, {y/( ¢(T"xo, T"x9, T"'x0))},,1 18 nonincreasing and bounded below, so the
sequence {y (@ (T"xo Ty, T 1x9))},,51 converges to some real number & > 0. Assume
k> 0, we can see clearly that by using inequality 3, inequality 3 becomes

w(@f (T%, T %0, T 'x0)) < (a(y (0 (T" %0, T"x0, T"x0)))
+ By (@f (T %0, T"x0, T%0))) + v (w (@f (T %0, T"x0, T"%0)))) 3.7
as n — oo, we get

1 < liminf (a(y (f (7" "%, T"x0, T"%0))) + B(w (0 (T" " x0, T"x0, T"x0)))

+7(w(0f (T %0, T"%, T"x0)))) (3.8
So, we have that
l//(a)f(T”‘lxo, T"x9, T"x0)) =0, (3.9
hence
lim ¢ (T”‘lxo, T"x9, T"x9) =0 (3.10)

n—o00
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AJMS for all 4 > 0, which is a contradiction to our assumption. Therefore,
272 limy (0 (T"%0, T %9, T" 1)) = 0, (3.11)

S0,
lima§ (T"x0, T" 20, T" ' 29) = 0 (3.12

n—oo
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for all 1 > 0. This shows that @ (T"x, T"'x, T"'x9) = Oforall 2 > 0, n>1.

Next, we show that {7"x},,51 is a modular G-Cauchy sequence. Suppose, if possible that
{T"x0},5, not a modular G-Cauchy sequence , then there exists real numbers, 49 > 0, ¢ > 0
and also there exists two subsequences {7"x0};s; and {T™x0}51 of the sequence
{T"x0},5, such that, for »; > my >k we have that wj (T’”kxo T xy, T”kxo) >¢ but

n( Ty, T xg, T 1x9) < e Now, since T xy=< T’“xo, we have that e <w] (T’"fxo,
T xg, T"x9) which implies that (e )sl//(wﬂo(T’”’ X0, T"x0, T"x9)) =y (@ O(Tka
TT" xy, TT" 'xp)). Set x = T" 'xg and y = T" % into inequality (3.1), then we have

wle) <y (f (170, T, T"50) ) <y (f (T a0, 770, T750) ))
) (@ o) (T 50, T 50, T7050) )+ B (@ (770, T, T71) ) )
<y (of (T’”’f so, TT" o, TT50) )+ (y (0 (T, 7710, T 0) ))
xp(f (T 0, TT 30, TT 50 ) = (@ (770, T30, T730) ))
< (0 (T 50, T, 7)) + (v (@ (7750, T, T7130) ) )
(wU(T’””l 0, Tx0) ) + 7 (w0 (T 50, T, T7x0) ))
xy(f (T 0, T, Tx0) ) < (0, (T w0, T3, T71x0) ) )
(@ (T, T, T750) ) ) + 8w (@ (1750, 7730, T 1) ) )
(@ (770, T, T70) ) 7 (@ (T 0, 770, T710) ))
(0 (7710, T, 7)) < (0 (T30, T2, T’”kxo))
-H//(cuj (750, T 0, T ) ) + (@ (1720, T, T750) )
oy (f (T30, T, T0) ) < (06, (T7 a0, T, T0))

() w (0 (T3, T, T7x0) ) (o (T 50, T, T50) ),
(3.13)

as k — oo, we obtain

w(e) < }}imy/(a)z (T™xo, T"x, T”kx0)> <o), (3.14)

so that



Modular

}}Lrglow(wg) (T x, T"xq, T”"xo)) = y(e). (3.15) Cometric
spaces
Hence
khma) (T™xg, TMxy, T"x) = (3.16)
221

Again, using condition 5 of Definition 2.6, we get
"4 (a)fo ( kaxo, TnkX(), Tﬂkxo)> <a (l[/ (a)fo (Tmrl.XT(), 7‘%"7196(), Twrlﬁ(f())) >
wg)ﬂ/(%) (frmk—le’ Tnk—lx07 Tnk—lxo)) + ﬂ (l// (a)AG0 (frmk—lxo’ T;zk—lxo’ T}zk—lxo)) )

Xy/(
Xy/(a)ﬁi T kg, Ty, T’”kxo)) +y(y/(wfo(T’”k‘1x0, T g5, T”k‘lxo)))
Xl//(
+y

a® (T”k‘lxo, T x, T”kxo)) 51//(0)2"0“(10)(ka‘le, Ty, T”’f‘lxo))
(a)ﬁ’o (T xo, T™ o, T’”kxo)) +y (wfo(T”’f‘lxo, T, T”kxo))
a)ﬁ’; (T ' xy, T ', Wk‘lxo)) +w (anU(ka‘lxo, T %, T’””xo))

T 1.960, T”"xo, T”’%’o)) < l//(ﬂ)fo (Tm"’_IJC(), Tﬂk_lﬁ(fo, Tnk_IJCo))

E
30
—~

T o, Ty, T xo)) + w(wg(T"’f‘lxo, T x, T’”"‘xo )
+y wi(?””"xo Tz, T)) <y (@, (T, T, 771y )
T o, Ty, T’”"xo)) + 1//( (T”k %o, Ty, T”“xo))
T™Mexy, T, T”’fxo)) 51//(&)%(7""}?‘1960, Ty, T o))

)

(
+y o (
+y wf0 (T %o, T™ o, T’”hxo)> + l//(a)fﬂ(T”h‘lxo, T"x, T"x0)
+y(@f (T"x, T"x, T”’*xo)),
317
as k — oo, we have
wle) < limy (f (7750, T x0, T x0) ) <y (o), (3.18)
so that
limy (a)fu (T™ kg, T, T"k‘lxo)) — (o). 3.19)
Hence
limw¢ (T o, T 'xg, T 'xg) = (3.20)

k=0

Thus, it follows that
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1< liminf(a(y/ (wfo (T 5, T T"k-lxo)))) : (321)

Therefore, we conclude that

11ma) (T’”’f xo, T 'x, T" '2) =0 V 4> 0. (3.22)

This is a contradiction. Therefore, it follows that { 7"x},,..; is a modular G-Cauchy sequence
in X,¢. Since X,¢ is complete modular G-metric space, there exists # € X,¢ such that
T"xy - u € X,c. Now we show that « is a fixed point of 7 for any arbitrary A > 0, using
condition 5 of Definition 2.6 and inequality (3.1), we have that

w (0§ (T"x0, Tu, Tu)) SI//(a)f(T”*lxo, Tu, Tu))
+ W( (Tnxo Tﬂ+1xo Tn+1x0))
—w(wl (T"*'x, Tu, Tu))
_i_l//(a)/l/z('rnxo7 Tn+1xo’ Tﬂ+1x0))
<y (@l (T xo, Tu, Tu))
+l//(a)/1G(Tn.9C0, T¢¢+1x07 Tn+1x0))
<a(y(wf (T"x0, u, u))y(@F,, (T %0, u, u)) (3.23)
+ By (0§ (T"x0, u, w)) )y (@S (T"%0, TT"x0, TT"x0))
+7(w(0f (T"x0, u, u)) )y (0 (u, Tu, Tu))
(w/lG(T;sz T¢4+1x0 Tn+1x0))
= a(y (@] (T"x0, 1, 1)) )y (@F, ) (T"50, 1, 10))
(U/(wf T/on, u, ”)))W( (@ (Til Xo, Tﬂ+1x07 rl+1x0))

+ 7w (0f (T"x0, u, u)) )y (05 (u, Tu, Tu))
(o0 T, T,

as 7 —oo, we have that

w(@f (e, T, Tu)) <y O (@, Tu, Tw) (3:24)
for all 4 > 0, which implies that
(1 —y(0)wC (u, Tu, Tu) <0 ¥V 1> 0. (3.25)
Therefore,
wf(u, Tu,Tu)y=0 V 1>0, (3.26)

where 1 —y(0) < 1. Hence, « is a fixed point of T for all 2 > 0, i.e; Tu = u.
Finally, for the uniqueness, we can see from above that 7 has a fixed point # € X .
Suppose that there is another fixed point of T i.e; Tv = v, for v € X ¢, thus condition (2) of



Theorem 3.1 tells us that if z € X, ¢ withz < Tzand it is comparable to both uandvand T"zis
also comparable to # and v for each n€ N. Now for 4 > 0, then y(w$ (7" 'z, u, u)) and
w(@§ (T2, v, v)) are finite. Claim : # = v. Indeed, using inequality (3. 1) we have by taking
x=T1"z and v = u. First consider y/(o%(T"+'z, u, u))< o0, so that we have the following
inequality by using condition 6 of Proposmon 22

w(0f (T2, u, u)) = w(w, (T2, Tu, Tu))

=y (0§ (TT"z, Tu, Tu))

a(y(wf (T2, u, w) )y (@F, (T2, u, u))
By (08 (T"2, u, u)) )y (S (T"2, TT"z, TT"z))
v (w (0f (T2, u, w)))y (0 (u, Tu, Tu))
(08T, 1, 0) o (T 1, )

“( ) (w/1 (T2, T, Tn+12))
ot(t//(cof(T”z7 u, u)))y/(wlﬂw(T”z, u, u))
+l//(cuf/4(T”“z, u, u)) +y/(a)§(T”“z, u, u)))

)
)

. (3.27)
U/(w/(l;Jru(l)(T 2, U, M))

+ +

so, we have that

a(y (0§ (T2, u, u)) + By (0% (T2, u, u)))
1 =28y (w§(T7z, u, u)))

<y (0§ (T"z, u, u))

<y (0§ (T2, u, u))

w(wf (T2, u, u)) < l//(wf(T”z, u, u))

<y (5 (2, u, u))

< 0.
(3.28)
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Therefore, {y/(w§(T"*'2, u, u))},; is nonincreasing sequence which is bounded below and
converges to some real number ¢€[0, co) Assume that ¢ >0, using the fact that
limy, o @ (T"x0, T" 29, T"1xg) = Ofor all A > 0, from inequality 3, we have that

w(of (T2, u, u)) <a(y(of (T2, u, w)) )y (0f, ) (T2, u, )
+ﬂ( (a)/1 T’ZZ u, u )) ( (Tnz Tn+1z T+, ))

3.29)
<a(y(0f(T"2, u, u) )y (0f(T"2, u, u))
+ B (0 (T2, u, u)) )y (wf (T”z, Tz, T"z)).
Using inequality 3 and letting # — oo, inequality 3 becomes
1< liminfa(y (0§ (172, u, u))). (3.30)
Thus, by condition 4 of Proposition 2.3 we have that
limaw¢(T"z, u, u) =0 (3.31)

for all 2 > 0. Therefore, 7"z — u as n — .

Secondly consider w(w$ (7”12, v, v))<co, from inequality (3.1), we have by taking
x = T"z and y = v, so that we have the following inequality by using condition 6 of
Proposition 2.2

(12, ,0)) =
(0§ (TT"z, Tv, Tv))
(6 (T2 0. 0) (el (T2, 0, )
w(0f(T"z, v, v) )y (0§ (T2, TT"z, TT"2))
y(0f (T2, v, v)) )y (@ (v, Tv, Tv))
aly(@f (T2, v, v)) )y (0f. (T2, v, v))
B 0))w (0§ (T2, Tz, T"'z))
a(y (0f (T2, v, v)) )y (@F, ) (T2, v, v))
v) ("’(“’W ("2 v,0))) (3:32)

P (of (172, 0.0
(o772, 5,0)) + v (054(T"2, 0, 1))
)
)

y(ow w,(T""'z, Tv, Tv))

+ o+ A
Asm

A/\

a
B
v\

—

y(0f(T"z, v,

A+

+ o+

y(@f(

a(y (0f (T2, v, v)) )y (0F ) (T2, v, v))

+ By (0f (T2, v, v)) (lp(ww (T"z, v, v))

+ 21//((0 0a(T" 'z, 0, v)) <a(y(wf(T"z, v, 0)))y (oS (T"z, v, v)))
+ By (0f (T2, v, v))) (y (@S (T2, v, v))

+ 2y (0§ (T”“z v,0))) = a(y (@ (T2, v,0))y (0} (T"z, v, v)))
+ By (0§ (T2, v, v)) )y (@S (T72, v, v))

+2p(w (0§ (T2, v, v)) )y (@S (T2, v, v)).



Therefore, we have Modular

G-metric
G (il aly (0f(T"2,0,0))) + By (@F (T"2,0,0))) G0 spaces
w(o; (T2 0.0)) < 1= 26(p (o (T2,0,0))) vlei (T, )
<y (0§ (T"z,0,v))
225

<y (@ (T"'2,v,0)) (3.33)

<y(of(z,v,0))
< 0.

Hence, {y(@$(T""'z, v, v))},s; is nonincreasing sequence which is bounded below and
converges to some real number £ € [0, co) Suppose that £, > 0, using the fact that
lim,,, @ (T"x0, T" 29, T"'xg) = Ofor all A > 0. From inequality 3, we have that
w(of (T2, v, v)) <a(y (0f (T"2, v, v)) )y (07, (T2, v, v))
+ By ((u/1 (T7z, 0,0)) )y (0f (T2, T" 'z, T"'2))

(3.34)
<a(y(0f(T"z, v, v)) )y (S (T2, v, v))
+ By (@ (T2, v, 0)) )y (@ (T2, Tz, T"'2)).
Using inequality 3 and letting # — oo, inequality 3 becomes
1< liminf a(y (0§ (172, v, v))). (3.35)
Thus, by condition 4 of Proposition 2.3 we have that
limw®(T"z, v, v) =0 (3.36)

for all 2 > 0. Therefore, 7"z — v as n — oo.
Suppose, if possible, that hm T"zexists and not unique. Let lim 77z = yand lim 7"z = v

n—oo n—o0

as we have seen above, Where u+#v. For each 1 > 0, u;éz/:wh (u, v, v) > 0. If we take

w(e) =ty (wa(u, v, v))>0, then for 1> 0, hm T"z = u= given ¢ > 0,3 m; €N such

that l//(a)m( , Tz, T"z))<y(e1) for n> ml. Again, lim 7"z =v= given ¢ >0,
Nn—o0

3 my € N such that l//(w/(l;/4(l)7 T"z, T"z))<w(e) for n > my. Set m = max{my, my}, then

for n > m, by condition 6 of Proposition 2.2, we have

w(al(u, v, v)) sw(wf/z(u, Tz, T"2)

+ 20,00, T2, T'9)) <y (0w, T2, T"9)
+ 2 (u(0, T2 T72) ) <yle) + 2(er)

= 3y (e1),
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which shows that y(w§(u, v, v))<y(w$(u, v, v)) for all A > 0. This is a contradiction.
Hence, # = v. Therefore the fixed point of T is unique and the proof is complete. ]
We shall give an example to support Theorem 3.1 above.

Example 3.1. Let X = R, define modular G-metric by @$ (x, v, ¥) = oo if 4 <2|x —y| and
$(x,,9)=01if 1> 2[x-y|, and wf(x,y, ) = G(xfy, where G(x, v, y) = 2|x—y| or
G(x,y,2) = |x—y| + [y—2| + |x—2| for x,y,z€ R We can see that X, ¢ = R So it follows
from Theorem 3.1 that R is a complete preordered modular G-metric space. Now define a
map 7T:R—-R by Tx = sz For x, y€R, then a)/l(x ¥, ) =00 if A<2|x—y]|, so
inequality (3.1) is satisfied. Agam if A > 2|x—y|land x,y €R, then

(T 13, 13) =2}

= 1+y~ <4|x—y| < 2), therefore, o$(Tx, Ty, Ty) = 20§ (x,,) <0.

We can take y(f) = ¢, a(t) = B(¢) = y(t) = 1. But T has a fixed point at x = 0.

Corollary 3.2. Let (X, ®®)bea complete modular G-metric space with a preorder, < anda
nondecreasing self-mapping 7 : X,¢c - X, ¢ on X,c such that for each A > 0, there is
v(4) €0, 4) such that the following conditions hold:

)

y(of (Tx, Ty, Ty)) <aly (@f (v, v, ) )w (0F ) (x5, ), (337)

wherey € Pand @ € Sg,, and distinct x, y € X, ¢. Assuming that if a nondecreasing sequence
{%,},en cOnVerges to x*, then x, <x* for each n e N,
(2 if y is subadditive and for any x, vy € X, there exists z€ X ¢ with z< 7Tz and
a)f (2, Tz, Tz)is finite for all A > Osuch that z is comparable to both x and y. Then 7’
has a fixed point # € X,,¢ and the sequence define by {7"x0},, converges to u.
Moreover, the fixed point of 7" is unique.
Proof: Let xyp€ X, be such that xy<7xy and let x, = Tx,-1 = T"x for all neN.
Regarding that T"is nondecreasing mapping, we have that xo < Tx, = x;, which implies that
= Txo<Tx; = xo. Inductively, we have

Xo=<x1 <= <20=x, <%0 =---. (3.38)

Assume that there exists 7y € N such that x,,, = %,,+1. Since x,,, = %y,+1 = 1%y, then x,, is
the fixed point of 7. Now suppose that x, =x,1 for all z € N, thus by inequality (3.38), we
have that

Ko <x1 <X < - <Xy <X <Xy <---. (3.39)

Now for each A > 0, and xy< T, for all » € N implies that wf (%o, Txo, Txo) > 0. Again, let
%y € X,c such that ©f % (x0, Txo, Txo) < 0o ¥V A > 0.

Flrst we show that for all ne N, the sequence C(T"xg, T a9, T 'x9) = 0 for all
A>0,asn— o0.

Assume that for each # € N, there exists 4, > 0 such that a)i(T”“xo, T"x9, T"x0) #0.
Otherwise we are done. Suppose that for each n>1, if 0 <A< 1, then we have
@§ (T x, T"x, T"x0) #0. Since T"xg < T"*'xy, we have from inequality (3.37) that
l/f(a)gi(T”“xo, T"x, T”xo)) 51//(00?(T"+1x0, T"x, THX())) = l//((l)?(TT”Xo, TT”_lﬁ(Z(),
TT" xg)). Take x = T"xg and y = T" ' x0, then inequality (3.37) becomes;



w(of (T" %0, T, T"%0)) <a(y (wf (T"x, T" %0, T"'x0)))
06y (T, T, T01))
<a(y (@l (T"x0, T" %0, T"'x0))) (3.40)
Xy (0 (T"%0, T" 20, T"'x0))
<y (0§ (T, T 'x0, T"'x0)).
Therefore, {y(w$ (T xq, T"xo, T"x0))},»1 1S nonincreasing and bounded below and
converges to some real number 7 > 0. Assume that 7 > 0. In such a case,
T <y(wf (T %0, T"%0, T"%0))
<a(y(af (T"x0, T" 'x0, T" %)) )y (0§ (T"x0, T" 20, T" ' x0)) (341)
<y (o (T, T" 50, T" 1)),

which implies that

w (@ (T xo, T'x0, T"x))
T
< a(l// (Cl)f (THX(), T”‘lxo, T’l_le) ) )l// (a)f (T”xo, T”_le, Tn_le) )

1<

(342

T
- w (oS (T"x0, T %0, T" ')

T

Letting, 7 — oo, Theorem 2.1 ensure that {a(y(w§(T"x, 7" 'x0, T""'x0)))},., =1 or
from inequality 3, -

1< liminf a(y (@f (T"x, T 'x0, T"'%0)))- (343)
As a € S¢,,, then
limy (0 (T30, "0, T"20)) =0 (3.44)

for all 2 > 0, which contradicts the fact that ¢ > 0. Thus 7 = 0, so that
lim wf(T”“xm T"x0, T"xo) =0. (3.45)

n—o0o

Hence wf(T““xo, T"x, T"xp) = Ofor all 1 > 0, n > 1. Following the proof of Theorem 3.1
above, we see that T has a unique fixed point in X, . (]

Theorem 3.3. Let (X, ®*)bea complete modular G-metric space with a preorder, <,and a
nondecreasing self-mapping 7 : X, ¢ - X,¢c on X, such that for each A > 0, there is
v(4) € [0, 4) such that the following conditions hold:

@

w(f (T"x, T"y, T")) <aly(af (x, ,9)))w (0F 0 (%, 3, 9)), (3.46)
where y € Yand a € S, and distinct x, y € X, ¢. Assuming that if a nondecreasing sequence
{%n},en cOnverges to &%, then x, <x* for each n e N,

(2) if y is subadditive and for any x, y € X, there exists z€ X ¢ with z< 7Tz and
w§ (z, Tz, Tz)is finite for all 1 > Osuch that z is comparable to both x and . Then T
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has a fixed point # € X,c for some positive integer m and the sequence define by
{T"xy},5; converges to u. Moreover, the fixed point of 7 is unique.
Proof. By Corollary 3.2, 7" has a fixed point say u# € X, for some positive integer 7 > 1. Now
T"(Tu) = T"'u = T(T"u) = Tu,so Tuis a fixed point of 7", By the uniqueness of fixed
point of 7™, we have Tu = u. Therefore, « is a fixed point of 7. Since fixed point of T'is also
fixed point of 7%, hence T has a unique fixed point in X,¢. []

Theorem 3.4. Let (X, ®®)bea complete modular G-metric space with a preorder, < and a
nondecreasing self-mapping 7: X, c - X,c on X, such that for each A > 0, there is
v(4) €0, ) such that the following conditions hold:

@
w(af (T"x, T"y, T"y)) <a(y(of (x, v, y)))y/(a),1+ (6,9, 9)) + By (0 (x,3,9))
X )y (@f (v, T, T")) + v (v (0F (6.,9)) )w (o (v, T", T"y)),
3.47)
where y €¥ and {a, B, v} €Ser with a(t) + 2max{sup,seB(?), supser(t)} < 1, and

distinct ¥, y € X,c. Assuming that if a nondecreasing sequence {x,},., converges to x*,
then x,, <«x* for each n e N,

(2) ifwissubadditive and for any distinct x, ¥ € X ¢, there exists z € X ¢ withz< Tzand
cuf (2, Tz, Tz)is finite for all 1 > Osuch that z is comparable to both x andy. Then T

has a fixed point # € X, ¢ for some positive integer 7 > 1 and the sequence define by
{T"x0},51 converges to u. Moreover, the fixed point of 7"is unique.

Proof: By Theorem 3.1, 7" has a fixed point say «.. € X,c for some positive integer m > 1.
Now T"(Tu,) = T""u, = T(T"u.) = Tu,, so Tu, is a fixed point of 7. By the
uniqueness of fixed point of 7", we have Tu, = u,. Therefore, u, is a fixed point of 7. Since
fixed point of 7 is also fixed point of 7", hence T has a unique fixed point in X, . []

Theorem 3.5. Let (X, ®®)bea complete modular G-metric space with a preorder, < and a
nondecreasing self-mapping 7 : X, ¢ — X, c on X ¢ such that for each A > 0, there is
v(4) €0, 4) such that the following conditions hold:

@
w(wf (Tx, Ty, Tz)) <a(y (o (x,9.2)) )y (07, (4. 3,2)) + B (w (@ (2,5, 2))
Xy (@ (x, Tx, Tx)) + (v (0f (2,3, 2)) )y (0 (v, Ty, ) +8(w (@ (x,,2))
Xy (0 (z, Tz, Tz)), (348
wherey €Pand {a, 8,7, 8} €S, with a(t) + 2max{supB(1), Supsey(f), sup;sed(£)} <1,

and x,y,z€X,¢. Assuming that if a nondecreasing sequence {x,},., converges to x, then
x, <xfor each neN,

ne

(2) if y is subadditive and for any x, y, z € X ¢, there exists w € X, ¢ with w=<Tw and
@§ (w, Tw, Tw) is finite for all 2 > 0 such that w is comparable to both x, yandz.
Then T has a fixed point # € X, c and the sequence define by { 7"x},,.; converges to
u. Moreover, the fixed point of 7" is unique. -

Proof. Let xy € X,c be such that xo < Txpand let x,, = Tx,—1 = T"x for allz € N. Regarding
that 7 is nondecreasing mapping, we have that xo<7Tx, = x;, which implies that
x1 = Txo<Tx1 = x9. Inductively, we have



xo<x1<x2<---5xn,15xnﬁxn+1S---. (349)

Assume that there exists 79 € N such that x,,, = %,+1. Since X, = %11 = 1%y, then x,, is
the fixed point of 7. Now suppose that x, =x,,1 for all n€ N, thus by inequality (3.38),
we have that

Fo < <Xy <.+ <oy <X <Xy <---. (3.50)

Now for each 4 > 0, and %0=<Tx for all » € N implies that o} % (x0, Txo, Txo) > 0. Again, let
%9 € X, such that o7 @ (x0, Txo, Txo) < 0o V 4 > 0.

First, we show that for all n€ N, the sequence ¢ (T"xo, T"*x, T" o) = 0 for all
A>0,as n— oo.

Assume that, for each n € N, there exists 4, > 0such that wf (7"xo, 7" xo, T xp) #0.
Otherwise there is nothing to prove. Suppose that for each# > 1,if 0 < A < A, then we have that
w§(T"x0, T"x0, T"x9) #0. Since T"xo<T"*x,, we have from inequality (3.5) that
w8 (T, T a0, T 1x0)) <yr(@8( T30, T Lxg, Tx0)) =y (T Lxg, T,
TT"x)). Take x = T"'xg and y = T"x9 = 2, then inequality (3.5) becomes;

of (T, T30, T0) ) <yr(0f (T, T, 7))
T %o, T, T”xo)))Xy/(wfﬂw(T”‘lxo, T"x, T"%0))
T %, T, T"%0))) Xy (0§ (T 20, TT" 200, TT" ') )
T %o, T"x0, T"%0))) Xy (05 (T"x0, TT"x0, TT"%0))
T Yxy, T %, T”xo)))Xy/(wf T"x, TT"x0, TT"x,))
)Xy a),pr (T”‘lxo, T"x, T"%))
Xy (@f (T" %0, T"x0, T”xo)) (351

g
>0
~—~ ~~ —~

I
—
<
—
S

(%]
—~
=
s s
~

=
=
<

i
&
\_/

\—/\_/
—

T 1_%.07 Tnxo7 Tnxo
(Tn lxo Tnxo Tnxo)))x (Tn lxo Tnxo Tnx()))
(Tn—lxo T}zxo T”xo)))Xl// a)f(Trzx()’ Tn+1x0’ T71+1x0))
( ) xw (@ (

T lxo " Yo, Tnxo T”xo, T}Hlxo7 Tﬂ+1x0))’

~—

=
e
>0
~
x
g):—-
=3
&
~
S
S

which implies that
l//(a)? (T"xo, 7%+1x07 T’Hle)) < yL's ((l)f (Tn_l.?(/'(), Tnﬂ(fo7 T”xo))

<y (0§ (T" %0, T"%, T"x0)) 652

<y (5 (x0, Txo, Txo)) <0
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where

a(y (@ (T xo, T, T7x0))) + B(w (0f (T %, T"x0, T"x0)))
1= (y(w(f (T 50, Trx0, T7%0))) + 8(w (0 (T %0, T, T”xo))))'

pi= (353)

Therefore, {y/(w$ (T"xo, T"'x9, T"*1x0))},51 is nonincreasing and bounded below, hence
converges to some real number s>0. We can also see clearly that by taking 6(.) :=
y(w (0§ (T x, T2, T"x0))) + 8(yw(w§ (T a9, T'x0, T"x0))), as y = T"x9 = 2, then
following Theorem 3.1, T has a unique fixed point in X ¢. This complete the proof. []

Theorem 3.6. Let (X, »®)be a complete modular G-metric space with a preorder, < and a

nondecreasing self-mapping 7" : X, c — X,c on X, ¢ such that for each A > 0, there is
v(4) €0, 4) such that the following conditions hold:

)

y (@} (T, T", T"2)) Sa(y (f (x, v, 2) )y (07 (%, 3, 2))
+ By (F (x, 3, 2)) )y (0 (x, T, T"0)) + 7 (w(of (x, 3, 2) Jy (@7 (v, T", T"))
+8(y (@ (v, 3, 2)) )y (07 =, T"2, T"2)),

(354)

where y € ¥ and {a, f, 7, 6} € Sg,r With a(t) + 2max{supB(t), supsoy(t), Supsed(t)}
< 1,and x, y, z€ X,c. Assuming that if a nondecreasing sequence {x, },, converges to x,
then x, <x for eachne N;

@2 if g/ is subadditive and for any x, y, z € X ¢, there exists w € X ¢ with w < Tw and

(w, Tw, Tw) is finite for all /1 > 0 such that w is comparable to both x, yandz.

Then T has a fixed point # € X, ¢ for some positive integer 72 > 1 and the sequence
define by {7"xo},,, converges to «. Moreover, the fixed point of T is unique.

Proof: Takey = zand ¢() = y(y (0§ (x, v, 2))) + 8(y (@ (x, ¥, 2))), then Theorem 3.5 tells
us that 7™ has a fixed point say « € X ¢ for some positive integer 7 > 1. Therefore, Theorem
3.4 shows that T has a unique fixed point in X, c. [

4. Applications to nonlinear Volterra-Fredholm-type integral equations

In this section, we construct a system of nonlinear integral equation that satisfies the
conditions of Theorem 3.1. We consider the following general nonlinear Volterra-Fredholm-
type integral equations.

u(t, ) = h(t, 2) + / t / F(t, 2, 5,3, uls, y), (Lu)(s, »))dyds, @)
0
B

and

v(t, x) = e(t, x) +/t /G(t, x, 8,3, v(s, ), (L'0)(s, y))dsdy, .2

B

0



where

(Lu)(t, %) = /0 t / K(t, %, 7, 2, u(z, 2))dedr, 43)
i’

and

(L) (1, x) = /0 t / K(t, %, 7, 2, 0(r, 2))dzd, (44)
B

h, F, Kande, G, Lare given functions and «, v are the unknown functions. We assume that
h,eeC(R.XB, R"), KeC(QXR", R"), FEC(QXR" X R", R"), GEC(Q X R" X R,
R")and Q = {(t, x, s, y) O<s<t< oo x, yEB},B=]] 1[a], 5], b > aj. Takesupm
€R, X Bg(s,y) < T where (£, x) eR; X B.
Leta, g,y >0 w1th a( ) + 2maxseq{sup;sof(t), supsoy () }(1 such that
)

F(, x, 5,9, u(s,y), (L'u)(s, ) =G, x, 5,9, v(s, 3), (L") (s, )|
<g(s, y{a(llu—v|)llu—vll + B(llu—vl|)m(u, L*u) + y(llu—v|)r(v, L'v)}
Let F, G: C(QXR" X R", R") - R” be such that F,, G, € C(Q X R" X R", R") and let

-/ 0 Pt 55,3, 0, (Lot s, 5)
B
and

1
G, = / 0 / G(t, x, 5, 9, 05, ), (L'D)(s, ¥))dsdy, (46)

for FEC(QAXR"XR", R"), Ge C(Q X R" X R", R") and «, v are the unknown functions.
Now for any A > 0, we define

sup {llx() =yl + () = 2Ol + lI(6) =z}, &1

1
G —
w; (xv Y, Z) T 2(1 +/1) (LR, x

so that

L s {0 -yl s)

G
% (x,y,) =
i .7) (14 2) ¢rer, xB

In fact Eqns. (4.7) and (4.8) satisfies all the conditions in Definition 2.6 endowed
with X6 = (X, 0°) = C(Q X R" X R", R")
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AJMS Now, take A = {3 super. xs{|Fu = Go + h(t, x) —e(t, x)|}, so that

27,2 1 t .
asr s ([ [P, o)
B
G(t%,5,3,0(5,3), (L'0)(5.9)) Xdyds}
232

<L Ms;;{pw{ / / (s.){a(u—o])u—o]

+ﬁ<||u—v|\>m(u,tu>+y<||u—v|\>r<v7L*v>}dyds}

—1% sup  t{a(lle vl —oll + Al —olm(e, L)

+}’(||%*v||)><r(v,L )}} 4.9

1
Sz, {allu—vl) o)

11/15119{/5(”% vllm(u, L'u) +y(|lu—v]l) X7 (v, L'0) }

1
<—— su a(llu—v||)||lu—v
7,5 {allu—olllu—vl}

T, S (Aol L)

—— su u—v||)r(v,Lv)},
S el L)

where m,7€C(R, X BXR",R")
WL(M,L*M)(ZL,X): sSup HFu(lL,X)'i‘h(lL,X)—M(l‘,X)H, (410)

(tx)ER XB

r(v,L'v)(t,x)= sup ||G,(t,x)+e(t,x)—v(t,x)| 4.11)

(tx)eR, XB

Theorem 4.1. Let X, = C(Q X R” X R”, R")be a complete modular G-metric space and
@ : (0, 00) X X0 X X6 X X0 > R™.U {0} be defined by

@b (u, v, v) = sup \normu(t, x) —v(¢, x), A >0 @.12).

1+ 2 ¢t xer, xB

and u<veu(t, x) <v(t, x) V (¢ x) R, XB. Let F,, G, : C(QAXR"XR”", R") - R" are
such that F,, G,€X,¢ for each u, veX, and F,, G, satisfying Eqns. (4.5) and (4.6),
respectively, for all (£,x) € R, XB. Suppose that there exists nonnegative reals a, g, y > 0
with a(f) + 2maxeq{supsof(t), Supsor(¢)} < 1such thatinequality 4 is satisfied for every
u, v € X,c. Moreover if y is subadditive and for any u, v € X, ¢, there exists wy, w; € X, ¢ with
wo<w, and wf(wo, wy, wy ) 1s finite for all A > 0 such that w is comparable to both # and v.
Then the system of integral Eqns (4.1) and (4.2) have a unique solution in X.



Proof Define the mapping 7" : X, c = X,cby Tu = F,, + eand Tv = G, + h. Thenfor A > 0,
@$(Tu, Tv, Tv) = 158D xer, x5\nOTME(t, x) = Gy(t, x) + (t x) = h(t, x), wl C(u, Tu,
Tu) = 1Hsup(tx)eR+XB\normF (¢, x)+e(t, x) —u(t, x) and ] (v, Tv, Tv) = 1+/lsup(t )
€R | XB\normG,(t, x) + h(t, x) — v(t, x). So from inequality 4, we get by noticing that y is
continuous and subadditive and there exists v € [0, 1) such that

w (0 (Tu, Tv, Tv)) <a(y(of (4, v, ) )y (0F, (@, v, v))

@13)
+ By (@5 (u, v, 0)))w (& (u, Tu, Tu)) +7(p (0 (u,0,0) )y (0f (v, Tv, Tv)),

where y € ¥. By Theorem 3.1, we conclude that the system of nonlinear Volterra-Fredholm
integral Eqns (4.1) and (4.2) have a unique solution in X,¢. [J
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