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Abstract

Purpose – Besse first conjectured that the solution of the critical point equation (CPE) must be Einstein. The
CPE conjecture on some other types of Riemannian manifolds, for instance, odd-dimensional Riemannian
manifolds has considered by many geometers. Hence, it deserves special attention to consider the CPE on
a certain class of almost contact metric manifolds. In this direction, the authors considered CPE on almost
f-cosymplectic manifolds.
Design/methodology/approach – The paper opted the tensor calculus on manifolds to find the solution of
the CPE.
Findings – In this paper, in particular, the authors obtained that a connected f-cosymplectic manifold
satisfying CPE with \lambda5\tilde{f} is Einstein. Next, the authors find that a three dimensional almost
f-cosymplectic manifold satisfying the CPE is either Einstein or its scalar curvature vanishes identically if its
Ricci tensor is pseudo anti-commuting.
Originality/value – The paper proved that the CPE conjecture is true for almost f-cosymplectic manifolds.
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1. Introduction
One of the natural ways of finding canonical Riemannian metric, that is, Riemannian metrics
with constant curvature in various form on a smoothmanifold is to look formetrics which are
critical points of a natural functional on the space of all metrics on a given manifold. In this
context, it is very interesting to investigate the critical points of total scalar curvature
functional S : M→R given by

SðgÞ ¼
Z
M

rgdvg; (1.1)

defined on a compact orientable Riemannian n-manifold (M, g), where M denotes set of all
Riemannian metrics on (M, g) of unit volume, rg is the scalar curvature and dvg is the volume
form. The functionalS in Eqn (1.1) restricted overM is known as Einstein–Hilbert functional
and its critical points are the Einstein metric (see chapter 2 in [1]).
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Let C⊂M be the subset of metrics with constant scalar curvature. If we consider the
functional in Eqn (1.1) restricted to C, then it is not difficult to see that the Euler–Lagrangian
equation is given by,

Hessgλ� ðΔgλÞ � λRicg ¼ Ricg � r

n
g; (1.2)

for some smooth function λ on M. Here Hess, Δg, Ric and r stands for the Hessian form, the
Laplacian, the Ricci tensor and the scalar curvature on M, respectively. Moreover, taking
trace in Eqn (1.2), we obtain

Δgλþ rλ

n� 1
¼ 0:

We notice that if λ is constant in Eqn (1.2), then λ5 0 and g becomes Einstein. Therefore, we
have the following definition:

Definition 1.1. A compact Riemannian manifold (M, g) of dimension n > 3 with constant
scalar curvature and unit volume together with a smooth potential
function λ satisfying (Eqn 1.2), is called critical point equation
(shortly, CPE).

Besse first conjectured that the solution of the CPEmust be Einstein [1]. Since then, we find
many articles regarding the solution of the CPE. In [2], Barros and Ribeiro proved that the
CPE conjecture is true under the assumption of half conformally flat spaces. Recently,
Hwang [3] proved that the CPE conjecture is also true under certain condition on the
bounds of the potential function λ. A necessary and sufficient condition for the norm of the
gradient of the potential function for a CPE metric to be the Einstein metric was obtained
by Neto [4].

It is very interesting to consider the CPE on odd-dimensional Riemannian manifolds. In
this direction, Ghosh and Patra considered theK-contact metrics that satisfy the CPE [5], and
proved that the CPE conjecture is true for this class of metric. Patra et al. in [6], and De and
Mandal in [7] independently considered an almost Kenmotsu manifold with CPE. Recently,
present authors in [8], and Blaga and Dey in [9] studied CPE on cosymplectic manifold and
three dimensional α-cosymplectic manifold, respectively.

As the generalization of almost Kenmotsu and almost cosymplectic manifolds, the results
obtained in [6–9] motivates us to consider almost f-cosymplectic manifolds. In this paper, we
classify an almost f-cosymplectic manifold which satisfies CPE.

2. Preliminaries
LetM be a smooth differentiable manifold of dimension 2nþ 1 equipped with a triple (w, ξ, η),
where w is a (1, 1)-tensor field, ξ is a Reeb vector and η is a one-form such that

w2X ¼ −X þ ηðXÞξ; ηðξÞ ¼ 1; (2.1)

which implies w(ξ)5 0, η(w)5 0 and rank(w)5 2n. IfM admits a Riemannian metric g such
that

gðwX ;wY Þ ¼ gðX ;Y Þ � ηðXÞηðY Þ; gðX ; ξÞ ¼ ηðXÞ;
for any vector fieldsX,Y, thenM is said to have an almost contact metric structure (w, ξ, η, g).
On such a manifold, the fundamental two-form Φ of M is defined by

ΦðX ;Y Þ ¼ gðwX ;Y Þ;
for any vector fieldX andY onM. One can define an almost complex structure J onM 3Rby
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J X ; u
d

dt

� �
¼ wX � uξ; ηðXÞ d

dt

� �
;

where t is the coordinate of R and u is a smooth function. If the aforesaid structure J is
integrable, then we call an almost contact structure as normal, and this is equivalent to
require ½w;w� ¼ −2dη⊗ ξ;

where [w, w] indicates the Nijenhuis tensor of w.
An almost contact metric manifold M is said to be almost cosymplectic if dη 5 0 and

dΦ 5 0, where d is the exterior differential operator, and it is said to be cosymplectic if in
addition the almost contact structure is normal. An almost α-Kenmotsumanifold is an almost
contact metric manifold, in which dη5 0 and dΦ5 2αη ∧Φ, for a nonzero constant α. More
generally, if the constant α is any real number, then almost contact structure is said to be
almost α-cosymplectic [10]. Moreover, the authors in [11] generalizes the almost
α-cosymplectic manifold by allowing the real number α to any smooth function f, and it is
called as an almost f-cosymplectic manifold, which is an almost contact metric manifold M
such that dΦ5 2fη∧Φ and dη5 0 for a smooth function f satisfying df∧ η5 0. In addition, a
normal almost f-cosymplectic manifold is said to be f-cosymplectic manifold. In particular,M
is an almost cosymplectic manifold under the condition f(constant) 5 0 and an almost
α-Kenmotsu manifold if (α 5 f ≠ 1).

Besides, we recall that there is an operator h ¼ 1
2 £ξ w, which is a self-dual operator. We

denote by R and Ric the Riemannian curvature tensor and Ricci tensor, respectively. For an
almost f-cosymplectic manifold M, the following equations were proved [11]:

∇Xξ ¼ −fw2X � whX ; traceðwhÞ ¼ 0; (2.2)

RðX ; ξÞξ� wRðwX ; ξÞξ ¼ 2ð~fw2X � h2XÞ; (2.3)

Ricðξ; ξÞ ¼ −2n~f � traceðh2Þ; (2.4)

RðX ; ξÞξ ¼ ~fw2X þ 2fwhX � h2X þ wð∇ξhÞX ; (2.5)

for any vector fields X, Y on M, where ~f ¼ ξðf Þ þ f 2.

3. CPE on normal almost f-cosymplectic manifolds
In this section, we aim to study CPE on normal almost f-cosymplectic manifold.We are aware
that if almost contact metric manifold is normal then h5 0. Hence, as a result of Proposition 9
and Proposition 10 of [11] we have the following identities, which are valid on f-cosymplectic
manifolds;

∇Xξ ¼ −fw2X ; (3.1)

Qξ ¼ −2n~f ξ; (3.2)
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RðX ;Y Þξ ¼ ~f fηðXÞY � ηðY ÞXg; (3.3)

where Q is the Ricci operator of M.
Now, we will give some properties, which will be used in the proof of our results.

Lemma 3.1. An f-cosymplectic manifold M of dimension 2n þ 1 satisfies

ð∇XQÞξ ¼ −fQX � 2nðX~f Þξ� 2n~f fX ; (3.4)

ð∇ξQÞX ¼ −2fQX � ð2n� 1ÞðX~f Þξ� ðξ~f ÞX � 4n~f f X : (3.5)

Proof. Differentiation of Eqn (3.2), and utilization of first term of Eqn (3.1) provides Eqn (3.4).
Now differentiating Eqn (3.3) along Z leads to

ð∇ZRÞðX ;Y Þξ ¼ ðZ~f ÞfηðXÞY � ηðY ÞXg þ ~f f gðX ; ZÞYf
�gðY ; ZÞXg � fRðX ;Y ÞZ :

Taking X 5 Z 5 Ei in the above equation and then summing over i shows that

X2nþ1

i¼1

gðð∇Ei
RÞðEi;Y Þξ; ZÞ ¼ ðξ~f ÞgðY ; ZÞ � ðZ~f ÞηðY Þ

þ2n~f fgðY ; ZÞ þ f RicðY ; ZÞ:
(3.6)

One can easily deduce from second Bianchi identity that

X2nþ1

i¼1

gðð∇Ei
RÞðZ ; ξÞY ;EiÞ ¼ gðð∇ZQÞξ;Y Þ � gð∇ξQÞZ ;Y Þ: (3.7)

Feeding Eqn (3.7) into Eqn (3.6) and with the help of Eqn (3.4), we obtain

gðð∇ξQÞZ ;Y Þ ¼−2f RicðZ ;Y Þ � ð2n� 1ÞðZ~f ÞηðY Þ
� ðξ~f ÞgðZ ;Y Þ � 4n~f fgðZ ;Y Þ;

which proves Eqn (3.5). ,

Lemma 3.2. [5] Let (g, λ) be a nontrivial solution of the CPE (Eqn 1.2) on n-dimensional
Riemannian manifold M. Then the curvature tensor R can be expressed as

RðX ;Y ÞDλ ¼ðXλÞQY � ðYλÞQX þ ðνþ 1Þðð∇XQÞY � ð∇YQÞXÞ
þðXνÞY � ðYνÞX ; (3.8)

for any vector fields X, Y on M, where ν ¼ −rð λ
n− 1

þ 1
n
Þ.

In the following, we will consider an f-cosymplectic manifoldM satisfying a CPE and assume
that the function f satisfies ξð~f Þ ¼ 0.

Theorem 3.3. LetM be an f-cosymplectic manifold of dimension 2nþ 1 with ξð~f Þ ¼ 0. If
(g, λ) is a solution of the CPE (Eqn 1.2), then one of the following
statement holds:

(1) M is Einstein
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(2) M is locally the product of a K€ahler manifold and an interval or unit circle S1.

Proof. Taking scalar product of Eqn (3.8) with ξ and making use of Eqns (3.2) and (3.3), we
obtain

−ð2nþ 1Þ~ffðYλÞηðXÞ � ðXλÞηðY Þg ¼ 2nðλþ 1Þ ηðXÞðY~f Þ
n

−ηðY ÞðX~f Þ
o
þ ðXνÞηðY Þ � ðYνÞηðXÞ:

Replacing X by wX and Y by ξ in above relation, we get

ð2nþ 1Þ~fwDλþ 2nðλþ 1ÞwD~f � wDν ¼ 0: (3.9)

According to Proposition 2.1 of Chen [12], it is know that if ðξ~f Þ ¼ 0, then ~f is constant. So
that, Eqn (3.9) implies ð2nþ 1Þ~fwDλ ¼ wDν: (3.10)

The scalar curvature r of g is constant (as (g, λ) is a solution of the CPE). For a (2n þ 1)-
dimensional f-cosymplectic manifold, we have ν ¼ −rð λ

2n þ 1
2nþ1Þ, therefore from Eqn (3.10) it

appears that

ðð2nþ 1Þ~f þ r

2n
ÞwDλ ¼ 0: (3.11)

From Eqn (3.11), we have either r ¼ −2nð2nþ 1Þ~f or wDλ 5 0.
First suppose that r ¼ −2nð2nþ 1Þ~f , then we have Dν ¼ −ð2nþ 1Þ~fDλ. Plugging X5 ξ

in Eqn (3.8) and calling back Lemma 3.1, we aimed at obtaining

RðX ; ξÞDλ ¼ −2n~f ðXλÞ � ðξλÞQX þ ðλþ 1ÞffQX þ 2n~f fXg þ ðXνÞ � ðξνÞX :
FromEqn (3.3), we deduceRðX ; ξÞY ¼ ~ffgðX ;Y Þξ− ηðY ÞXg, by virtue of this the foregoing
equation reduces to

�ð2nþ 1Þ~f ðXλÞξþ ð~f ðξλÞ � ðξνÞ þ 2n~f f ðλþ 1ÞÞX
þðf ðλþ 1Þ � ðξλÞÞQX þ ðXνÞξ ¼ 0:

(3.12)

Making use of Dν ¼ −ð2nþ 1Þ~fDλ in Eqn (3.12) we reach at

ðf ðλþ 1Þ � ðξλÞÞðQX þ 2n ~f XÞ ¼ 0:

Since ∇ξξ 5 0 and (ξλ) 5 g(ξ, Dλ), taking into account ∇XDλ 5 (λ þ 1)QX þ νX, we deduce
ξðξλÞ ¼ ~f λ. If possible, let (ξλ) 5 f(λ þ 1) in some open set O of M, then we have
~f λ ¼ ððξf Þ þ f 2Þðλþ 1Þ. By virtue of ~f ¼ ðξf Þ þ f 2, one can see λ 5 λ þ 1, that is, 1 5 0,
which is absurd. Hence QX ¼ −2n~f X and M is Einstein.

Next we assume r≠ − 2nð2nþ 1Þ~f , then fromEqn (3.11) we have wDλ5 0. Action of w on
this equation gives Dλ5 (ξλ)ξ. Differentiating this along X, calling back Eqn (3.1) furnishes

∇XDλ ¼ XðξλÞξ� f ðξλÞw2X : (3.13)

On the other hand, from Eqn (1.2) we can easily find that

∇XDλ ¼ ðλþ 1ÞQX þ Δλ� r

2nþ 1

� �
X : (3.14)
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Comparing aforementioned equation with Eqn (3.13), we get

ðλþ 1ÞQX þ Δλ� r

2nþ 1

� �
X ¼ XðξλÞξ� f ðξλÞw2X :

Taking X 5 ξ in the above equation and making use of Eqns (3.2) and (2.1), we obtain

ξðξλÞ ¼ Δλ� r

2nþ 1

� �
� 2n~f ðλþ 1Þ: (3.15)

Contraction of Eqn (3.13) with respect to X brings into view

Δλ ¼ ξðξλÞ þ 2nf ðξλÞ: (3.16)

Unifying this with Eqn (3.15) implies

2nf ðξλÞ � r

2nþ 1
� 2n~f ðλþ 1Þ ¼ 0: (3.17)

Differentiating Eqn (3.17) along ξ, keeping in mind that ~f and r are constants, we obtain
ξðξλÞf þ ðξλÞðξf Þ ¼ ~f ðξλÞ, and further, it implies

ξðξλÞ ¼ f 2ðξλÞ; (3.18)

where we used ~f ¼ ðξf Þ þ f 2.
If fu 0, then we can assume f≠ 0 on some neighborhoodOofM. Thus, Eqn (3.18) implies

ξ(ξλ) 5 (ξλ)f on O. Inserting this into Eqn (3.16), we find Δλ 5 (2n þ 1)f(ξλ). Moreover,
applying Eqn (3.17) in the previous relation shows that

Δλ ¼ ð2nþ 1Þ ~f ðλþ 1Þ þ r

2nþ 1

� �
: (3.19)

Taking trace of CPE (1.2), we obatin 2nΔλ5�λr, and this together with Eqn (3.19) gives that
r ¼ −2nð2nþ 1Þ~f , which is contradictory to our assumption. Hence f u 0, and so M is
cosymplectic. According to Blair’s [13] result, we can easily conclude that M is locally the
product of a K€ahler manifold and an interval or unit circle S1. This finishes the proof. ,

In particular, when dimension of M is three, due to Theorem 3.3 we have the following
outcome:

Corollary 3.4. Let M be an f-cosymplectic manifold of dimension three satisfying CPE
Eqn (1.2). If ðξ~f Þ ¼ 0, then M is either locally the product of a K€ahler
manifold and an interval or unit circle S1 or M has constant negative
sectional curvature −~f .

It is known that an α-cosymplectic manifold is actually an f-cosymplectic manifold with f
constant. By the reason of this, we obtain the following conclusion from Theorem 3.3.

Corollary 3.5. LetM be an α-cosymplectic manifold of dimension 2nþ 1 with ξð~f Þ ¼ 0. If
(g, λ) is a solution of the CPE Eqn (1.2), thenM is either Einstein or locally
the product of a K€ahler manifold and an interval or unit circle S1.

Now we consider CPE with λ ¼ ~f , and obtain the following result.

Theorem 3.6. If a connected f-cosymplectic manifold M satisfying CPE Eqn (1.2) with
λ ¼ ~f , then M is Einstein.
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Proof. One can easily obtain from Eqn (3.9) that

fð4nþ 1Þλþ 2ngwDλ ¼ wDν;

where we applied our assumption λ ¼ ~f . Uptaking ν ¼ −rf λ
2n
þ 1

2nþ1
g in the above relation

implies

ð4nþ 1Þλþ 2nþ r

2n

n o
wDλ ¼ 0:

Suppose that ð4nþ 1Þλþ 2nþ r
2nu 0. Due to constancy of r, we see that λ is constant. Next,

we assume that ð4nþ 1Þλþ 2nþ r
2nu 0$ in a neighborhoodO ofM. Consequently, one can

getswDλ5 0. Applyingw to this equation impliesDλ5 (ξλ)ξ. In this context (3.13) holds, from
which we can get

2nf ðξλÞ � r

2nþ 1
� 2nλðλþ 1Þ ¼ 0: (3.20)

Differentiating this along ξ gives (2λ þ 1)(ξλ) 5 ξ(ξλ)f þ (ξλ)(ξf ), due to our assumption
λ ¼ ~f ¼ ðξf Þ þ f 2 which further implies

ðλþ f 2 þ 1ÞðξλÞ ¼ ξðξλÞf : (3.21)

Suppose that f5 0, then fromEqn (3.20), we have λðλþ 1Þ þ r
2nð2nþ1Þ ¼ 0, whichmeans that λ is

constant. In the followingwe suppose f≠ 0, then as a result ofEqns (3.16), (3.20) and (3.21), we find

Δλ ¼ fðλþ 1Þ þ f 2ð2nþ 1Þg ðξλÞ
f

:

Substitute this into 2nΔλ 5 �λr to obtain

−2n
ðξλÞ
f

� 2nð2nþ 1Þλ ¼ r:

Differentiating the aforesaid relation along ξ, remembering r is constant and applying Eqn
(3.21), we reach at

2nþ 3þ 1

f 2

� �
ðξλÞ ¼ 0:

If (ξλ) 5 0, then we have Dλ 5 0, which means λ is constant. Suppose (ξλ) ≠ 0, then we get

f 2 ¼ 1
2nþ3. Due to f ≠ 0, which shows (ξf) 5 0. This together with λ ¼ ~f ¼ ðξf Þ þ f 2 yields

λ 5 f2, showing λ constant. In a word, we have proved that λ is always constant in the

neighborhood O of M, thus λ 5 constant in M. Hence, the proof completes from Eqn (1.2).

4. CPE on non-normal almost f-cosymplectic manifolds
Here, we consider a three dimensional almost f-cosymplectic manifold M with pseudo anti-
commuting Ricci tensor, that is,

wQþ Qw ¼ 2κw; κ is constant:

This notion was introduced by Jeong and Suh [14], and they made use of this condition to
classify a real hypersurface of complex two-plane Grassmannians.

At first, we have the following lemma:
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Lemma 4.1. [15] For a three dimensional almost f-cosymplectic manifold with pseudo
anticommuting Ricci tensor the following formula holds:

r � 2κ ¼ a;

where a 5 g(Qξ, ξ).

Let U be the open subset where the tensor h ≠ 0 and U0
be the open subset such that h is

identically zero. Thus, U∪U0
is open dense inM. There exists a local orthonormal frame field

E5 {ξ, e, we} such that he5 μe and hwe5�μwe, where μ is a positive nonvanishing smooth
function ofM. The following proposition is obtain from Proposition 12 and Proposition 14 of
€Ozt€urk et al. [10]:

Proposition 4.2. For a three dimensional almost f-cosymplectic manifold, the following
relations hold:

h2 � f 2w2 ¼ a

2
w2; (4.1)

∇ξh ¼ 2bhw þ ðξμÞs; (4.2)

where b is a function defined by b5 g(∇ξwe, e) and s is a (1,1) tensor field defined by se5 e,
swe 5 �we and sξ 5 0.

From this onwards, we assume that a three dimensional almost f-cosymplectic manifold M
satisfies theCPEEqn (1.2), then its scalar curvature r is constant. As a result of Lemma4.1, it can

be seen that a is constant. Chen in [15] obtained the relation ðr− 2κ− 2~f − 2aÞwX ¼ 2wh2X.

From this we have ð−2~f − aÞwX ¼ 2wh2X, that is, 2h2X ¼ ð2~f þ aÞw2X as hξ 5 0. Further,
from Eqn (4.1) we find (ξ f )5 0, due to df∧ η5 0 we obtain f is constant. Moreover, we can also
find a5�2( f 2þ μ2) fromEqn (4.1). Thusμ is constant. In view of Lemma 2 of [10], we have the
following (also see [15]):

Lemma 4.3. Let M be a three dimensional almost f-almost cosymplectic manifold
satisfying the CPE Eqn (1.2). If the Ricci tensor is pseudo anticommuting,
then with respect to E the Levi-Civita connection ∇ is given by

∇ξe ¼ −bwe; ∇ξwe ¼ be; ∇ξξ ¼ 0;
∇eξ ¼ fe� μwe; ∇ee ¼ −f ξ; ∇ewe ¼ μξ;

∇weξ ¼ −μeþ fwe; ∇wewe ¼ −f ξ; ∇wee ¼ μξ:
(4.3)

In view of Eqn (4.2), the relation Eqn (2.5) implies

RðX ; ξÞξ ¼ −
a

2
w2 þ 2fwhX þ 2bhX : (4.4)

By virtue of Eqn (3.8), we obtain

gðRðX ; ξÞDλ; ξÞ ¼ aðXλÞ � aðξλÞηðXÞ þ ðXνÞ � ðξνÞηðXÞ
¼ a� r

2

� �
ððXλÞ � ðξλÞηðXÞÞ:
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Substituting the above relation into Eqn (4.4), we obtain
a

2
gðw2X ;DλÞ � 2fgðwhX ;DλÞ � 2bgðhX ;DλÞ

¼ a� r

2

� �
ððXλÞ � ðξλÞηðXÞÞ:

(4.6)

Employing X by wX in Eqn (4.6) we reach at

3a� r

2

� �
wDλ ¼ 2fhDλþ 2bhwDλ: (4.7)

In orthonormal frame field E, the gradient vector field Dλ can be written as

Dλ ¼ ðeλÞeþ ðweλÞweþ ðξλÞξ: (4.8)

Thus from Eqn (4.7), one can obtain

� 3a� r

2

� �
ðweλÞ ¼ 2fμðeλÞ � 2bhðweλÞ; (4.9)

and
3a� r

2

� �
ðeλÞ ¼ −2fμðweλÞ þ 2bhðeλÞ: (4.10)

First we assume f ≠ 0, because of f is constant and we shall divide this discussion into
two cases:

Case 1. If (eλ)5 0, then from Eqn (4.10) we can observe (weλ)5 0. This together with (4.8)
yields Dλ 5 (ξλ)ξ. Differentiating this along X, using Eqn (2.2) gives

∇XDλ ¼ XðξλÞ � ðξλÞðfw2X þ whXÞ: (4.11)

Employing X 5 ξ in the above equation and remembering ∇ξDλ ¼ ðλþ 1ÞQξþ ðΔλ− r
3Þξ,

we aimed at obtaining

ξðξλÞ ¼ ðλþ 1Þaþ Δλ� r

3
: (4.12)

One can find from Eqn (4.11) and second term of Eqn (2.2) that

Δλ ¼ ξðξλÞ þ 2f ðξλÞ: (4.13)

By virtue of the foregoing relation, Eqn (4.12) transforms into ðξλÞ ¼ r
6f −

ðλþ1Þa
2f , which further

gives

ξðξλÞ ¼ −
ðξλÞa
2f

¼ −
ra

12f 2
þ ðλþ 1Þa2

4f 2
;

where we applied f and a are constants. Also, it is know that Δλ ¼ −λr
2
. Thus Eqn (4.12)

transforms into

λ
a2

4f 2
þ r

2
� a

� �
¼ ra

12f 2
� r

3
� a2

4f 2
þ a: (4.14)
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If a2

4f 2
þ r

2− a ¼ 0, thenwe have ra
12f 2

− r
3−

a2

4f 2
þ a ¼ 0, which further shows that r6 ð a

2f 2
þ 1Þ ¼ 0.

The former case implies that the scalar curvature ofM vanishes identically. In the latter case,
we have a5�2f2, which together with a5�2(f2þ μ2) implies μ5 0, which is not possible.

Next suppose a2

4f 2
þ r

2− a≠ 0, then from Eqn (4.14) it can easily conclude that λ is constant.

Case 2. If (eλ) ≠ 0 on a neighborhood O of M, then from (4.9) and (4.10) we extract

3a� r

2

� �2

¼ 4ðf 2 þ b2Þμ2: (4.15)

From the preceding equation, we can easily observe that b is constant because of μ and f are
constant. It is easy to seen from Eqns (4.9) and (4.10) that (eλ) and (weλ) are constants in O.

By the support of Eqn (4.3), we may easily compute that

∇eDλ ¼ ð�f ðeλÞ þ μðweλÞ þ eðξλÞÞξþ ðξλÞðfe� μweÞ;
∇weDλ ¼ ðμðeλÞ � f ðweλÞ þ weðξλÞÞξþ ðξλÞð�μeþ fweÞ;
∇ξDλ ¼ −bðeλÞweþ bðweλÞeþ ξðξλÞξ:

Thus Δλ 5 2f(ξλ) þ ξ(ξλ). So, utilization of ∇ξDλ ¼ ðλþ 1ÞQξþ ðΔλ− r
3Þξ followed from

(3.14), shows that

ðξλÞ ¼ r

6f
� ðλþ 1Þa

2f
:

As followed by Case 1, we can conclude that either r vanishes or λ is constant.
Nextwe assume f5 0, then fromEqns (4.9) and (4.10) we find b(eλ)(weλ)5 0 as μ>0, which

further implies either (eλ)(weλ)5 0 or b5 0. We shall also discuss this matter into two cases.
Subcase i. If b 5 0, then from Eqn (4.10) we find r 5 3a. For three dimensional case, it is

known that the Riemannian curvature is

RðX ;Y ÞZ ¼ gðY ; ZÞQX � gðX ; ZÞQY þ gðQY ; ZÞX � gðQX ; ZÞY
�r

2
fgðY ; ZÞX � gðX ; ZÞYg:

From this, we have

RðX ; ξÞξ ¼ QX � 2aηðXÞξþ aX � r

2
fX � ηðXÞξg

¼ QX � a

2
ηðXÞξ� a

2
X :

This together with Eqn (4.4) yields QX 5 aX, which means M is Einstein.
Subcase ii. If b ≠ 0 on some neighborhood O of M, then we find (eλ)(weλ) 5 0 on O. If

possible, let (eλ)5 05 (weλ), then fromEqn (4.8) we obtainDλ5 (ξλ)ξ. From this it is not hard
to see that Eqn (4.12) holds and Eqn (4.13) impliesΔλ5 ξ(ξλ). Thus Eqn (4.12) transforms into
ðλþ 1Þa− r

3 ¼ 0, which means λ is constant on O.
If (eλ) 5 0 and (weλ) ≠ 0, then from Eqns (4.3) and (4.8) we compute

∇ξDλ ¼ ξðweλÞweþ bðweλÞeþ ξðξλÞξ:
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Utilization of above relation in∇ξDλ ¼ ðΔλ− r
3Þξþ ðλþ 1Þaξ, we find b(weλ)5 0. Because of

b ≠ 0, we have (weλ) 5 0, which is a contradiction. In a similar manner, we also come to
contradiction if we consider (eλ) ≠ 0 and (weλ) 5 0.

From the above detailed discussion, we have concluded that M is Einstein or its scalar
curvature vanishes, and so we state following result:

Theorem 4.4. Let M be a three dimensional almost f-almost cosymplectic manifold
satisfying the CPE Eqn (1.2), if its Ricci tensor is pseudo anti-commuting,
then M is either Einstein or its scalar curvature vanishes identically.
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