The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/1319-5166.htm

On classification of
(72 + 6)-dimensional nilpotent 7:-Lie
algebras of class 2 with n > 4

Mehdi Jamshidi and Farshid Saeedi
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad,
Iran, and

Hamid Darabi
Esfarayen University of Technology, Esfarayen, Iran

Abstract

Purpose — The purpose of this paper is to determine the structure of nilpotent ( + 6)-dimensional 7-Lie
algebras of class 2 when 7 > 4.

Design/methodology/approach — By dividing a nilpotent (n + 6)-dimensional #-Lie algebra of class 2 by a
central element, the authors arrive to a nilpotent (7 + 5) dimensional z-Lie algebra of class 2. Given that the
authors have the structure of nilpotent (n + 5)-dimensional #-Lie algebras of class 2, the authors have access to
the structure of the desired algebras.

Findings — In this paper, for each # >4, the authors have found 24 nilpotent (n + 6) dimensional #n-Lie
algebras of class 2. Of these, 15 are non-split algebras and the nine remaining algebras are written as direct
additions of #n-Lie algebras of low-dimension and abelian #-Lie algebras.

Originality/value — This classification of #-Lie algebras provides a complete understanding of these algebras
that are used in algebraic studies.
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1. Introduction

In 1985, Filippov [1] introduced the concept of n-Lie (Filippov) algebras, as an n-ary multilinear
and skew-symmetric operation [1, . . ., x,,], which satisfies the following generalized Jacobi
identity

=

Hxla s 7xﬂ]7 Yo, ... ayn] = [xla ey [xia V2, 7.yn}7 B xﬂH'
=1

Clearly, such an algebra becomes an ordinary Lie algebra when #» = 2. Beside presenting
many examples of #-Lie algebras, he also extended the notions of simplicity and nilpotency
and determined all (z + 1)-dimensional #-Lie algebras over an algebraically closed field of
characteristic zero.

The study of #n-Lie algebras is important, since it is related to geometry and physics.
Among other results, #-Lie algebras are classified in some cases. For example, Bai et al. [2]
classified all #-Lie algebras of dimension 7 + 1 over a field of characteristic 2. Also, they
showed that there is no simple #-Lie algebra of dimension # + 2. Then, Bai et al. [3] classified
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n-Lie algebras of dimension 7 + 2 on the algebraically closed fields with characteristic zero.
(see [4-7] for more information on the Filippov algebras).

In 1986, Kasymov [8] studied some properties of nilpotent and solvable #-Lie algebras. An
n-Lie algebra A is nilpotent if A° = 0 for some nonnegative integer s, where A’ is defined
inductively by A! = Aand A" = [A?, A, ..., A]. The n-Lie algebra A is nilpotent of class c,
if A =0 and A’ =0 for each i <c. The ideal A?> =[A,..., A] is called the derived
subalgebra of A. The center of A is defined by

ZA)={xeA:[x,A,...,A] =0}
Let Zy(A) = (0). Then the ith center of A is defined inductively by

=7 (Zz-im)

for alli > 1. Clearly, Z;(A) = Z(A).

The nilpotent theories of many algebras attract more and more attention. For example, in
[9,10], and [11], the authors studied nilpotent Leibniz n-algebras, nilpotent Lie and Leibniz
algebras, and nilpotent #-Lie algebras, respectively.

The (7 + 3)-dimensional nilpotent #-Lie algebras and (n + 4)-dimensional nilpotent n-Lie
algebras of class 2 were classified in [12]. Hoseini ef al [13] classified (# + 5)-dimensional
nilpotent 7-Lie algebras of class 2.

In this paper, we have interest for algebras of class 2 (the minimal class for nonabelian
case). The concept of filiform #-Lie algebras (maximal class) has been studied in some papers.
For example, see [14].

The rest of our paper is organized as follows: Section 2 includes the results that are used
frequently in the last section. In Section 3, we classify (# + 6)-dimensional #-Lie algebras of
class 2 when # > 4. For the case #n = 2, this problem is dealt with by Yan et al. [15]. Also, the
case n = 3 stated in [16].

2. Preliminaries

In this section, we introduce some known and necessary results. We denote d-dimensional
abelian #-Lie algebra by F(d). An important category of #-Lie algebras of class 2, which plays
an essential role in classification of nilpotent #-Lie algebras, are algebras whose derived and
center are equal. We call an #-Lie algebra A, a generalized Heisenberg of rank &, if A2 = Z(A)
and dim A% = k. The particular case % = 1, is called the special Heisenberg #-Lie algebras.
The structure of this algebras defined as follows.

Theorem 2.1. [17]Every special Heisenberg #-Lie algebra has dimension 7 + 1 for some
natural number 2, and it is isomorphic to

H(ﬂ, Wl) = <x, Xlyeooy X ¢ [xn(l-,l)ﬂ, xn(i,le, ey xm-] =X, Z = 1, ey Wl)

Theorem 2.2. [18] Let A be a d-dimensional nilpotent #-Lie algebra, and let dim A2 = 1.
Then, for some m > 1, it follows that

Az=H(n, m)®F(d—mn—1).

Theorem 2.3. [18] Let A be a nonabelian nilpotent #-Lie algebra of dimension d <7 + 2.
Then A is isomorphic to H(n, 1), H(n, 1) @ F(1) or A, 42,1, Where
Appgo1 = (€1, enq2 i 1, ., €] = €ui1, €2, - . -, €ny1] = €ny2).



For unification of notation in what follows, the #th d-dimensional #-Lie algebra is denoted
by An‘,d,t-

Theorem 2.4. [12] The (n + 3)-dimensional nonabelian nilpotent #-Lie algebras for n > 2
over an arbitrary field are A,,,13,(2<7<8). Moreover nilpotent classes of A, ;32 and
Ay ny351s two, nilpotent classes of Ay, 433, Apn+34and Ay, 43 1s three and finally, nilpotent
classes of A 136 and A, 137 is four (maximal class).

Theorem 2.5. [12] The only (n + 4)-dimensional nilpotent #-Lie algebras of class 2 are
H(nv 1) ®F(3)7 Anﬁn+4ﬁ17 A11¢n+4¢2: An,n+4,37 H(Za 2) ®F(1)7 H(3> 2)7 L6,22(E)a and[%,?(”)'

Theorem 2.6. [13] The (n + 5)-dimensional nilpotent #-Lie algebras of class 2 for
n>2 over an arbitrary field are H(n, 1)@ F(4), Apnis5:(1<i<7), H3, 2) @ F(1)
and H(4,2).

Theorem 2.7. [19] Let A be a nilpotent n-Lie algebra of class 2. Then, there exist
a generalized Heisenberg n-Lie algebra H and an abelian n-Lie algebra F such
that A=H®F.

3. Main results
In this section, we classify (# + 6)-dimensional nilpotent #-Lie algebras of class 2. If n-Lie
algebra A is nilpotent of class 2, then A is nonabelian and A? C Z(A). The nilpotent #-Lie
algebra of class 2 plays an essential role in some geometry problems such as the commutative
Riemannian manifold. Additionally, the classification of nilpotent Lie algebras of class 2 is
one of the most important issues in Lie algebras.

The following theorems define the structure of generalized Heisenberg #-Lie algebras of
rank 2 with dimension at most 22 + 3.

Theorem 3.1. [18] Let A be a nilpotent #n-Lie algebra of dimension d =#n + % for
3<k<n+ 1such that A% = Z(A) and dimA? = 2. Then

Az <ela ceey Epgk t [ek—b cee en+k—2] = €ntks [817 cee €n] = en+k—1>-

Remark. In the above theovem for n = 2 and k = 3, we obtain

A= ey, e, €3, 4, 65 : [e1, €3] = ey, [e2, 3] = e5).
This algebra appears many times in differential geometry in the study of Pfaffian systems. It
was developed by P. Libermann and introduced in [20].

Theorem 3.2. [19] Let A be a generalized Heisenberg #n-Lie algebra of rank 2 with
dimension 2% + 2. Then

A EA?LZ}H»ZJ = <€1, ceey €42 [61, ey en] = €241, [en+17 ceey eZﬂ} = eZn+2>~

Theorem 3.3. [19] Let A be a generalized Heisenberg »-Lie algebras of rank 2 with
dimension 27 + 3. Then, A is isomorphic to one of the following #-Lie algebras:

A11.211+3,1 = <ela ceey €243t [617 ceey en] = €213, [623 ceey en+1] = [en+2a RN 82n+1] = eZn+2>-
An.2n+3.2 = <el7 sy €243 0 [el’ ey en} = [en+1’ ey eZn] = €243, [627 ey en+1]
- [en+27 ey eZnJrl} = e2ﬂ+2>~

For n = 2, we obtain also a Lie algebra of the previous type.
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Table 1.

Now we are going to classify (z + 6)-dimensional nilpotent #-Lie algebras of class 2.
According to Theorem 2.7, we can write A = H @ F, where H is a generalized Heisenberg
n-Lie algebra of rank 2 and F is abelian. Therefore, first we classify the generalized
Heisenberg #-Lie algebra of rank 2.
By the classification of nilpotent #-Lie algebras of class 2, we have the following
theorem. All the algebras defined in theorem 3.4 and follow are in Table 1 at the end of
the paper.

Theorem 3.4.

(1) The only (n + 4)-dimensional generalized Heisenberg #-Lie algebra of rank 3 is
An,n+4,3~

(2) The only (n + 5)-dimensional generalized Heisenberg #-Lie algebras of rank 3 are
An,n+5,4 and An,n+5,5~

(3) The only (n + 5)-dimensional generalized Heisenberg #-Lie algebra of rank 4 is
An,n+5,6'

The following lemma defines the structure of (# 4 6)-dimensional generalized Heisenberg #-
Lie algebras of rank 2.

Theorem 3.5. Let A be a generalized Heisenberg #-Lie algebra of rank 2 with dimension
n + 6. Then

A g1411,n+6,1 = <ela sy €6t [elv sy en] = €n45, [657 ey en+4} = en+6>-

Proof. For n=4, we have n+6 =2n+2 Thus by Theorem 3.2, if #>5, then
n+3<n+6<2n+ 1 Applying Theorem 3.1 completes the proof. m

Theorem 3.6. The only (z + 6)-dimensional generalized Heisenberg #-Lie algebras of
rank 3 are

An,n+6,2» Anﬂ+6‘33 An,n+6,47 An,n+6,57 andAn.nJrG.G (8)

Nilpotent #-Lie algebras of class 2 Nonzero multiplications
Aﬂ,n+4,1 [eh ceey en] = €n+3, [327 ceey en+1] = €n+4
An.n+4.2 [el-, ey en] = €y+3, [837 ey gn+2] = €p44 (” > 3)
An.ﬂ+4.3 [ela [EEE eﬂ] = €p+1, [627 sy 6, en+2] = €y+3;

[el 36355 €,y en+2] = €n+4
Aﬂ,n+5,1 [eh ceey en] = €n+4, [927 ceey en+1] = €ny5

nn+5,2 [61; ey en] = €n+4, [eiia e en+2] = €p45 (7[ 23)

An.n+5.3 [el sy eﬂ] = €45, [847 ceey en+3] = €n+4 (7’1 > 3)
An,n+5,4 [61, ey en] = €43, [627 ey en+1} = €p14,

[617637 cees en+1] = €nt5
An,n+5,5 [317 ey en] = €343, [32a e aen+1] = €ni4,

[eZA ceey Epy en+2] = €n45
An.ﬂ+5.6 [817 ey en] = €n+3, [621 B en+1] = Ent4,

[337 ey eﬂ+2] = €n45

Appss7 ler, .-, en] = eni1, 1, 2,04, s €y €ni2] = €5,

[617637 Sy en+2] = €n+4, [627 ceey Oy en+2] = €n+3




Proof. Suppose that A is an (z + 6)-dimensional generalized Heisenberg #-Lie algebra of rank
3 with basis {ei, . .., €,.6}, which > 4. Also, suppose that A% = (¢,14, €15, €,+6). In this
case, A/{ey16) is an (n + 5)-dimensional nilpotent n-Lie algebra of class 2 with derived
algebra of dimension 2. By Theorem 2.6, we have three possibilities for A/({e,.s): Case 1: Let
A/(ent6) = Ay pisa. Then the brackets in A can be written as

[elv ceey en] = €14 + Ay,

[627 sy en+1] = €45 +ﬁen+67

[e1,-- ) Ciyevns Cny Cpi1] = s, 2<i<n,

[617 ceey /e\i: ceey €, en+2] = Piuys, 1<i<n,
[617~--7/é1’;-~-:€men+3]:}’ien+6a 1<i<n,

[e1,. .y €y Gy Cuy Cnit, Cnga] = Yilnris, 1<i<j<n,

[e1, s @y Gyenny Cuy Cury €ur3) = Sijluro, 1<i<j<n,

(1) s Cyevny Gyenylny Cnyay nis] = Ailnys, 1<i<j<n,
1, @y Gy @y €y, Cuy2, Eni3] = Dplnis, 1<i<j<k<n.

Regarding a suitable change of basis, one can assume that « = = 0.
Since dim(A/{en 14, ens5))* = 1, we have A/(ens4, €4:5) = H(n, 1) @ F(3). According to
the structure of #-Lie algebras, we conclude that one of the coefficients

Y(1<i<j<n), ¢p(1<i<j<k<n)

is equal to one, and the others are zero. We have four possibilities:

M) Ahe=1,4=01<i<j<n (1 j)#(1,2)), and ¢y = 0(1<i <j < k<n). Inthis
case, the brackets in A can be written as

[61, ce 7en] = €pid, [623 cee aen+1] = €45, [e37 vy €y €12, en+3] = €16
which we denote it by 4,162

@ A3=124=01<i<j<n (i,))#(2,3)), and ¢; = 0(1<i <j < k<n).Inthis
case, the brackets in A can be written as

[elv ey en] = €n+4; [623 R en+1} = €n45; [eb Chy .oy Eyy Epy2, en+3] = €n+65
which we denote it by A4, 163

@) 4 =0(1<i<j<n), ¢1p3=1 and¢y =01<i <j<k<n (7, k)#(1,2,3))
In this case, the brackets in A can be written as

[617 ey en] = €p14, [827 ey en-ﬁ—l} = €45, [647 ey en+3] = €y46-
One can easily see that this algebra is isomorphic to 4,63

@ 4;=001<i<j<n),Poy =1,¢; =0(1<i <j<k<n),(i,j,k)#(2,3,4)). Inthis
case, the brackets in A can be written as

[el7 ey en} = €ni4, [827 ey eﬂ+1] = €45, [el’ €5, .., en+3] = €y,

which we denote it by A4, ,1464-
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Case 2. Let A/{ey16) 2 Ay t52 Then the brackets in A can be written as

[917 ce en} = €44 + A6,

[627 s en+1] = €pi5 T ﬂen+67

1, @y ey ni1] = Ailyis, 1<i<n,

[617""a7"'78717eil+2] _ﬁieﬂ+67 1SZS”7

[617"'7/8\1'7"'787176%4—3] = Yi€n+6, 15ZS”7

ler, ... .. Gy sl i1, Cnra] = Yilnst 1<i<j<n,
(@.7)#(1,2),

[617 s a/e\iv s 72]': s 7enaen+1>en+3] = 5ijeil+67 1 SZ <]S7fl7

(€1, sy €y riny €3] = Ainis, 1<i<j<n,

le1, ... iy Gy Chy eyl B s Eng3] = Dpplnrs, 1<1<j<k<n.

Regarding a suitable change of basis, one can assume that a = g = 0.

Since dim(A/{ey-+4, e,,+5>)2 =1, we have A/{ey14,ens5) = H(n, 1) ® F(3). According to
the structure of #-Lie algebras and Z(A) = (¢4, €n+s, ents), We conclude that one of the
coefficients

rl<i<n),  §1<i<j<n),

Ai(l<i<j<n), ¢p(1<i<j<k<n)

is equal to one, and the others are zero. Similar to case 1, up to isomorphism, we have the
following algebras:

[e1y. -y en] = enia, €2y oy Cui1] = €nis, €2y -, €ny Cnis] = ure,

[ela ceey en} = €14, [827 ceey €,1+1} = €n45, [8 €2, €4y. .., €y, en+3] = €n6,
[ely ey 6,1} €ntd, [62; ey en+1} = €45, [627 €4y vy €y, en+3} = €p16,
[61, ey en} = €p44, [62, ey e,Hﬂ = €p45, [61, €9, €5,..., €y41, €n+3] = €y46-

One can easily see that the first and second algebras are isomorphic to A, ,+62 and Ay 463,
respectively. The third and fourth algebras are denoted by A,, 16,5 and A, 166, respectively,
that is,

An,n+6,5 = <€l7 sy €ng6 - [617 L) en] = €ni4, [827 . en+1] = €n45, [82; €4y s Cpyl, e;‘H»S} = en+6>
An,n+6,6 = <€1, sy Gng6t [elv LR en] = €pi4, [827 . en+1] = €py5, [ela €2, 65, ..., y €ntl, en+3] - eﬂ+6>7

Case 3. Let A/(eut6) = Apniss. Then the brackets in A can be written as

[e1,- - en] = euia + aeys,

[927 .o en+1] = €yy5 + ﬁen+6>

[e1, .- @y lny 1] = Xilyis, 1<i<n,

[e1, .-, Cy ..y Cnia] = Biluss, 1<i<n,

[617"'721'7"'78717en+3] = Yi€n+6, 1SZS”5

[€17 e 7/€\i7 e 7/6\]" cee ’emen+lyeﬂ+2] :)(ijen+6v 1 SZ <j$n7

(1, s ey €y ity Cnr3] = SijCnro, 1<i<j<n,

[eh . 7/8\2'7 e 7/8\]" e aenven+2>en+3] = /'{l']'en+61 1 SZ <]S7l,

€1, €y Gy Chye sy s g2y €3] = Dplngs, 1 <1 <j<k<nm,
(1,7, k) #(1,2,3).

Regarding a suitable change of basis, one can assume that @ = = 0.



Since dim(A/ (eps4, €nss))* = 1, wehave A/ (epq, €nss) = H(n, 1) @ F(3). According to
the structure of n-Lie algebra, we conclude that one of the coefficients
aivﬂivyi(lsisn)v ){ij76ﬁ7j’if(1si<jsn)7

is equal to one, and the others are zero. Similar to case 1, up to isomorphism, we have the
following algebras:

[61, ey en] = €p45, [647 ey €n+3] = €n+4, [62, €3,..., e,Hﬂ = €p46,
[617 sy en] = €n45; [647 ey en+3] = €pt4, [617 €2, €3, 65, ..., €,1+1} = €16,
[617 .. 7€n] = €45, [647 ceey €,1+3} = €ni4, [62; €3, €5,..., en+2} = €nt6-

One can easily see that these algebras are isomorphic to Ay ,163, Anni6a and Ay pies,
respectively. Therefore, there is no new algebra in this case. m

Theorem 3.7. The only (n + 6)-dimensional generalized Heisenberg #-Lie algebras of
rank 4 are

An.n+6.77 An,n+6,8a A%?’H’GQ? An,n+6,107 An,n+6,11> Anﬁ+6,12 andAn,11+6,13-
Proof.Suppose that A is an (z + 6)-dimensional generalized Heisenberg #-Lie algebra of rank
4 with basis {e1, . . ., ;.6 }, which n> 4. Also, suppose that A% = (e,,3, €14, €n15, ni6)-In

this case, A/{e,+6) is an (n + 5)-dimensional nilpotent #-Lie algebra of class 2 with derived
algebra of dimension 3. By Theorem LABEL:?, we have three possibilities for A/{e,):

Case 4. Let A/(ey+6) = Apnnisa. Then the brackets in A can be written as

[ela ce aen] = €y13 + Ay,

[e2a cee ,en+1] = €y14 + Plus,

[ela €3,. .. aen+1] = €p45 + Yen+6,

[ela-“a/e\ia'“a&HenJr]] = Qi€y+6, 3Sl§7l7

[1, .- Ciy ey enylnia] = Biluiss 1<i<n,
[ela e 721'3 e a/éjv e aemen+1a8n+2] :)(ijen+63 1 SZ <]Sn

Regarding a suitable change of bas2is, one can assume thata = =y = 0.
Since dim(A/{en+3,enid,€n15))" =1, we have A/(eyi3, enida, enis) =H(n, 1) @ F(2).
According to the structure of #-Lie algebras, we conclude that one of the coefficients

a;(3<i<n), p;(1<i<n), yx;(1<i<j<n)
is equal to one, and the others are zero. According to Z(A) = {e,13, €ni4, €urs, €urs}, the
coefficients @;(3 <7 <n) cannot be equal to one. We have three possibilities:

O A/=15=002<i<n),q=03<i<n), y; =0(1<i<j<n).

In this case, the brackets in A can be written as
le1,. ., e = nys, ez, u1] = €ppay
ler, €3,y en1] = euis, €2, .., s €ria] = Cnse,
which we denote it by A4, 167
@ p3=1,p=0(01<i<n,n#3), 0, =03<i<n), y; =0(1<i<j<n).
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In this case, the brackets in A can be written as

[81, ey 811} = €343, [827 LR} en+1]en+47

[61;837 ceey en+1] = €n+5, [81, €2, €4y ..., €y, €n+2} = €n+6,
which we denote it by 4,168

(3) Only one of y;s(1<i<j<n) is equal to one and the others are zero. Up to
isomorphism, we have the following algebras:

{ [81: ey 6,1} = €343, [82, ce ,en+1] = €pi4,
[e1, €5, enia] = nys,  [es,- -, eura] = ense,
{ le1, ..., €] = enss, le2, ..., en1] = €nya,
[81; €3,. .., en-H] = €n45, [62, Chyenny en+2] = Cu+t6,
{ [81,..., en} = €p43, [62,..., €n+1] = €n+4,
[ela €3,..., en+l] = €45, [61, €2, €5, ..., en+2] = €p16-

One can easily see that the first and second algebras are isomorphic to A, 167 and Ay 168,
respectively. The third algebras is denoted by A, 169

Case 5. Let A/(e,16) = Ay ni55 Then the brackets in A can be written as

ler, .- 0] = €3 + Ay,

[eZa s aen-%—l} = Cni4 +ﬁeﬂ’l+67

[927 ) en+2] = €ni5 T Ven+6,

[ela-'-a/e\iw--aenvewrl} = €46, ZSZSWZ,
[61,..-,a,...,€n,€n+2} :ﬁieil+67 ZSZSM,

1, ... €.y Cy sl luin,s Cara] = Yylnse, 150 <j<n.

Regarding a suitable change of baszis, one can assume thata = g =y = 0.
Smge dim(A/ (e,l+37en+4,en+5.)) =1, we have A/(e,13, €yi4, €ni5) =H (?/z,. B F(2).
According to the structure of #-Lie algebras, we conclude that one of the coefficients

a(B<i<n), pi(l<isn), x;(1<i<j<n)

is equal to one, and the others are zero. We have two possibilities:

(1) Only one of a;(3<i<n) and B;(1<i<n) is equal to one and the others are zero.
Without loss of generality, we assume ap = 1. Thus, the brackets in A can be written as

[ela"'ven} = €y43, [627“'76}14»1} = €14,
2, ... en enio] = €uis, [e1,€5,...,En11] = €pss.
One can easily see that this algebra is isomorphic to 4,167

(@) Only one of y;s(1<i<j<n) is equal to one and the others are zero. Up to
isomorphism, we have the following algebras:

{ [61, ey en} = €n+3, [62» ey en+1] = €n+4,

[827 sy €, eil+2] = €n45, [837 ey en+2] = €46,

{ [81, ey 6,1] = €343, [827 ey en-H] = €pi4,
[€2, .oy Cuy Crio] = €uisy  [€1, Caye -y Crio] = Cure

One can easily see that the first algebra is isomorphic to A4, ,+67. The second algebra is
denoted by A, +6,10-



Case 6. Let A/(ey+6) = Apnise Then the brackets in A can be written as

[81, s 7671] = €p13 T Aeys,

[627 cee 7en+1} = €nt4 +ﬂen+67

[83, ce aen+2} = €pi5 + Venss,

[ela"'a/éiw"ven;en-%—l] = i€pi6, Zslsna
[ely--waiw--aemenJrZ] = Pitnss; 1<i<n,

[ela s a/éh s 7/6}7 s 7eﬂaeﬂ+lae%+2] :)(z'je¢1+67 151 <]Sna (Za]) # (152)

Regarding a suitable change of basiZS, one can assume thata = g =y = 0.
Since dim(A/{en+3, €ni4,enis5))” =1, we have A/ (i3, enida, enis) =H(n, 1) @ F(2).
According to the structure of #-Lie algebras, we conclude that one of the coefficients

@ (2<i<n), B(1<i<n), x;(A<i<j<n,(i,))#(1,2))

is equal to one, and the others are zero. Up to isomorphism, we have the following algebras:

{ [ely ceey en] = €343, [627 ey en-H] = €p+4,
(€3, ., enia] = Cuys, [e1,€3,. ., €up1] = euss,
{ [el, ceey en] = €343, [827 ey en+1] = €pid,
[83, B en+2} = €n45, [617627 €y .0y en-H] = €u+6,
{ [817--~7 eﬂ] = €343, [827“-7 en+l] = €n+4,
les, .y enro] = €uis,  er €3, €y Cura] = us,
{ [617 ey en] = €,43, [927 ey en+1] = €14,
[937 cee en+2} = €uy5, [617 €2,€4y ..., Ep, en+2} = €u+6,
{ ey oy e =ewis, ez, an] = ugas
les, ..y enso] = €uis, [e1,e2,65,. .., €uia] = Cuis.

One can easily see that the first and second algebras are isomorphic to A, 167 and A, 16,
respectively. The third, fourth and fifth algebras are denoted by A, 1611, Annt6,12 and
Ay nv6,13 respectively. m

Theorem 3.8. Theonly (n + 6)-dimensional nilpotent #-Lie algebras of class 2 where n > 4
are

An,n+5,l @F(l)a An,n+4,1 @F(z)v An,n+3,1 @F(S), An,n+5,4 @F(l)
1),

{ H(n, 1)®F(5)(n>4), H4, 2) ®F(1), H(5, 2),
An‘n+5,5 @F(1)7 An‘n+4‘3 @F(2)> An,n+5,6 @F(

andAnJl-%—G,i(l < i < ].4-) .

Proof. Assume that A isan (n + 6)-dimensional nilpotent #-Lie algebra of class 2, where n > 4
and A = ey, ..., en6). If dim A% = 1, then by Theorem 2.2, A is isomorphic to one of the
following algebras:

H(n, 1)®F(5)(n=4), H4,2)®F(1), H(5,2).

Now, assume that dimA?>2 and that (e,.s, e,.6) CA% Therefore, A/(e,i6) is an

(n + 5)-dimensional nilpotent #-Lie algebra of class 2. It follows from Theorem 2.5 that

A/({ent6) is one of the following forms:
Hn,1)®F4), H4,2), A5 (1<i<7).

If A/{en6) is isomorphic to H(n, 1) @ F(4) or H(4, 2), then dimA? = 2. According to

Lemma 2.7, we can write A = H @ F, where H is a generalized Heisenberg #-Lie algebra of
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rank 2 and F'is abelian. The center of A has a dimension at most 5; thus the possible cases of A
are Hy, HH ®F(1), H, ® F(2), H; & F(3), where Hy, H1, H>, H; are generalized Heisenberg
n-Lie algebras of rank 2 with dimensions 7 + 6, # + 5, n + 4, n + 3, respectively. These
algebras read as follows:

An,n+6,1a Anﬂ+5‘1 @F(1)7 An,n+4,1 @F(Z), An,n+3,1 @F(B)

If A/{ens6) is isomorphic to Ay 51, Apnisz OF Appiss, then dim A% = 3. According to
Lemma 2.7, we can write A = H @ F, where H is a generalized Heisenberg #-Lie algebra of
rank 3 and F'is abelian. According to ?, these algebras read as follows:

An,n+6,27 An,n+6,3a An,n+6,47 An,n+6,57 Anﬂ+6,6a
An‘n+5‘4 @F(1)> An,n+5,5 @F(1)7 An,n+4,3 @F(Z) .

Also, If A/ (e, 16) is isomorphic to A, 154, Annis50r Ayaise then dim A% = 4. According to
Lemma 2.7, we can write A = H @ F, where H is a generalized Heisenberg #-Lie algebra of
rank 4 and F'is abelian. According to ?, these algebras read as follows:

An’n+6.7 ) An.n+6,8 ) An.n+6.9 ) An,n+6,10 )
A¢1An+6,11 ) An.n+6,127 An,n+6,137 An,n+56 @ F(l) .

Finally, If A/(ess6) =2Annisn then A% =Z(A) = (ens1, €ni3, €nrd, Cuys, €nys). The
brackets in A can be written as

[81, .. 6,1} = €1 + ey 16,

[627 ceey €,y en+2] = €n+3 + ﬁen+67

[e €3y, €y, en+2] = €nt4 + Ven+6,

le1, ez, 847 Ces €ny Cnyz] = uys + Pl

[eh <y €ny en+2} = Piturs, 4<i<n.

With a suitable change of basis, one can assume that @ = f = y = ¢ = 0. Thus, the brackets
in A are

[elv ey en] = €n41,

[e2s- -y €uy Coi2) = €nys,

[917 €3,..., Ey, en+2] = Cpid,

[ela €2, €4y..., €y, en+2} = €45,

61, Gy e vy uy nya] = Bitnys, 4<i<n.

By dim Z(A), we must have g; # 0 for some 4 <¢ <. Without loss of generality, assume that
B4 #0. By applying the transformations

n

U 'ﬁl' / - - /

e4:e4+ E (—1)]—8]', € =6 (1S1Sn+57 l;é4)7 eﬂ+6 :ﬁ4e7l+67
=5 4

we conclude that
A = <el> ceey Opye [ela ey en} = €p+1, [627 R ) en+2] = €43,
= €44, [617 €2, €4, ..., 6y, €n+2} = €pi5, = en+6>7

which we denote it by A,,,1614. 1

In Table 1, we show all (n + 4)-dimensional and (# + 5)-dimensional nilpotent #-Lie
algebras of class 2.

In Table 2, we show all #-Lie algebras obtained in this paper.
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Nilpotent #-Lie algebras of class 2 Nonzero multiplications K
of nilpotent
An‘n+6‘1 [617 ey en] = €n45, [957 ceey en+4] = €n+6 n-Lie algebraS
Apni62 [617 ceey en} = €n+4, [62, Sy enﬂ} = €n45,
[637 ceey Eny Enq2, en+3] = €ni6
An.n+6.3 [917 [ ) en} = €p44, [627 ceey eiwrl} = €45,
€1, €4y ..y Epy €342, €43 = €46
Anniod [917 cees en} = Cnid,s [627 ) en+ﬂ = €ni5, 149
[eh €5, ..., €n+3] = €n+6
An‘n+6‘5 [817 ey en} = €p44, [63; ey en+2} = €p45,
[627 €4y ..oy Cnyl, en+3] = €nt6
An‘n+6‘6 [ela B en] = €n+4, [937 ceey en+2] = €p45;
ler, €2, 5, .., €ni1, €nis] = Cnse

An‘n+6‘7 [ely ey en] = €n+3, [62: ey €n+1] = €n+4,

[617 €3,..., enH} = €45, [637 ey €n+2] = €n+6
Apnies [e1,- s €] = eny3, [€2, -, eni1] = €pya,

[e1, €3, -, enr1] = euys, [e2, €4, .., Cny2] = €ui6
An,n+6‘9 [ela ey en} = €y43; [EZa e ;en+1] = €n+4,

1, €3, eni1] = enys, [e1, €2, €5, .., €nya] = enig
An‘n+6‘10 [elv ey en] = €y+3; [627 ey en+1] = €p+4,

[827 sy €py en+2} = €45, [el: [P en+2} = €n+6
An‘n+6‘11 [317 ceey en] = €y+3; [eZ7 B en+1] = €p+4,

[53«, ey en+2] = €n45, [ela €3,..., €p, en+2] = €n+6
An‘n+6‘12 [eh ceey en] = €n+3, [627 ey en+ﬂ = €nt4,

[637 ) en+2] = €n+5, [617 €2, €4, ..., €y, e¢z+2] = €n+6
An.n+6.13 [ela cee »en] = €n+3, [32» cee :en+1] = €n+4,

(€3, ent2] = enys, [e1, €2, €5, .., €nya] = enig
An,n+6,14 [el7 ey en] = €n+1, [827 sy Opy en+2] = €y43;

[217 €3, €n, en+2] = Cni4, [63; e 7en+2] = €n+5, Table 2.

[81, €3, .., En, en+2] = €ni6
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