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Abstract

Purpose – In this work, the authors are interested in the notion of vector valued and set valued Pettis
integrable pramarts. The notion of pramart is more general than that of martingale. Every martingale is a
pramart, but the converse is not generally true.
Design/methodology/approach – In this work, the authors present several properties and convergence
theorems for Pettis integrable pramarts with convex weakly compact values in a separable Banach space.
Findings – The existence of the conditional expectation of Pettis integrable mutifunctions indexed by
bounded stopping times is provided. The authors prove the almost sure convergence in Mosco and linear
topologies of Pettis integrable pramartswith values in (cwk(E)) the family of convexweakly compact subsets of
a separable Banach space.
Originality/value – The purpose of the present paper is to present new properties and various new
convergence results for convex weakly compact valued Pettis integrable pramarts in Banach space.
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1. Introduction
The set valued (alias multivalued) integration is useful in several areas of mathematics such
as mathematical economics, image processing and analysis and theoretical statistics.

Various convergence results of set valued martingales and pramarts were studied in
Bochner integration by several authors; see, Akhiat et al. [1], Akhiat et al. [2], Akhiat et al. [3],
Castaing and Salvadori [4], Choukairi [5], Egghe [6], Ezzaki [7], Ezzaki and Tahri [8],
Talagrand [9]. On the other hand, less of them is known in the case of Pettis integration. In the
theory of integration in infinite-dimensional space, Pettis integrability is a more general
concept than that of Bochner integrability. Examples of Pettis integrable functions, which are
not Bochner integrable, are given in [10, Remark 5.2] and [11].

In this work, we are interested in the notion of vector valued and set valued Pettis
integrable pramarts. The notion of pramart is more general than that of martingale. Every
martingale is a pramart, but the converse is not generally true; see Egghe [6]. The purpose of
the present paper is to present new properties and various new convergence results for
convex weakly compact valued Pettis integrable pramarts in Banach space.

Our approach is based on a weak compactness result for Pettis integrable multifunctions
and new results upon the existence of the conditional expectation of Pettis integrable
multifunction developed in [12].
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The paper is organized as follows. In Section 2, we give some preliminaries and needed
results. In Section 3, we present the notion of Pettis integrability of convexweakly compact
valued multifunction (alias set valued maps) indexed by bounded stopping times. The
existence of the conditional expectation of aforementioned Pettis integrable
multifunctions is also provided. In Section 4, we present some properties and almost
sure convergence of vector valued Pettis integrable pramarts. By using the results stated
in Section 3 and a weak compactness result for Pettis integrable multifunctions, we prove
the almost sure convergence in Mosco and linear topologies of Pettis integrable pramarts
with values in (cwk(E)) the family of convex weakly compact subsets of a separable
Banach space E.

2. Notations and preliminaries
Throughout this paper, ðΩ;A;PÞ is a complete probability space, ðAnÞn≥1 is an increasing
sequence of sub σ-algebras of A such that A is the σ-algebra generated by ∪n≥1An, E is a
separable Banach space and E* is its topological dual. Let D* be a countable dense subset of
E* with respect to the Mackey topology τ(E*, E) and B* be the closed unit ball of E*.

We denote by cc(E)(resp.ccb(E))(resp.cwk(E)) the set of nonempty convex and closed (resp.
convex, closed and bounded) (resp. convex weakly compact) subsets of E. For C ∈ 2E\∅, we
denote by clA and coA the closure and the closed convex hull of A respectively and define
jCj 5 sup{kxk: x ∈ C}.

Let C ∈ cc(E), the distance function and the support function associated to C are defined
respectively by

dðx;CÞ ¼ inffkx� yk; y∈Cg; x∈E;

δ*ðx*;CÞ ¼ supf< x*; y >; y∈Cg; x* ∈E*:

For any A, B ∈ cc(E), the Hausdorff distance between A and B is defined by

HðA;BÞ ¼ sup
x*∈B*

jδ*ðx*;AÞ � δ*ðx*;BÞj:

L1
E ðresp:L1Þ denotes the space of A-measurable and Bochner integrable functions defined

from Ω to E (resp. the space ofA-measurable and integrable function defined from Ω to R ).
A set valued function X: Ω → cc(E) is A-measurable if for every open set U ⊂ E, the set

X−U ¼ fω∈Ω : XðωÞ \ U ≠∅g;
is in A see, [13].

A measurable set valued function is called a random set.
Let ðAnÞn≥1 be a sequence in cc(E) and A ∈ cc(E) we define

s� li An ¼ fx∈E : kxn � xk→ n→∞0 : xn ∈An; n≥ 1g;
and

w� ls An ¼ fx∈E : x ¼ w� lim
j→∞

xj : xj ∈Anj; j≥ 1g;

where s (resp. w) is the strong (resp. weak) topology in E and ðAnjÞj≥1 is subsequence

of ðAnÞn≥1.
We say that ðAnÞn≥1 is Mosco convergent toA, and we writeM� lim An5A ifA5 s� li

An 5 w � ls An.
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We say that ðAnÞn≥1 is convergent to A in the linear topology, and we write A5 τL� lim
An if and only if the following properties are satisfied:

� limn→∞δ*(x*, An) 5 δ*(x*, A), ∀x* ∈ E*;
� limn→∞d(x, An) 5 d(x, A), ∀x ∈ E.
For more properties of these topologies, see [14, Theorem 3.4]. On cc(E), the linear topology

is stronger than the Mosco topology; see, [14, Theorem 5.1].

Definition 21. A measurable function f: Ω→ E is said to be a selector of a random set X if
f(ω) ∈ X(ω) for all ω ∈ Ω.

Ameasurable function f:Ω→ E is said to be scalarly integrable if< x*; f ð:Þ > ∈L1 for each
x* ∈ E*.

Definition 22. We say that f is Pettis integrable if it is scalarly integrable, and for eachA∈A,
there exists fA ∈ E such that

< x*; fA >¼
Z
A

< x*; f > dP; ∀x* ∈E*:

fA is called the Pettis integral of f over A, and it is denoted by
R
A fdP.

Wedenote byP1
EðAÞ the space of all Pettis-integrable functions defined fromΩ toE.P1

EðAÞ is
endowed with the norm k.kPe defined by

kfkPe ¼ sup
x*∈B*

Z
Ω
j < x*; f > jdP; f ∈P1

EðAÞ:

An equivalent norm is given by kjfkjPe ¼ supfkR
A
fdPk : A∈Ag.

Definition 23. A subset H ⊂P1
E is said to be uniformly Pettis integrable if supf ∈ HkfkPe <

∞, and for each « > 0, there exists δ > 0 such that ∀A∈A,

PðAÞ≤ δ0 sup
x*∈B*

Z
A

j < x*; f > jdP ≤ ε; ∀f ∈H :

A random setXwith values in cwk(E) is said to be scalarly integrable if ∀ x*∈ B*, δ*(x*,X) is
integrable.

Definition 24. A random set X: Ω → cwk(E) is said to be Pettis integrable in cwk(E) if it is
scalarly integrable, and for each A∈A, there exists CA ∈ cwk(E) such that

δ*ðx*;CAÞ ¼
Z
A

δ*ðx*;XÞ dP; ∀x* ∈E*:

CA is called the Pettis integral of X over A, and it is denoted by
R
AX dP.

We denote by P1
cwkðEÞðAÞ (resp. P1

ccbðEÞðAÞ) the set of all Pettis-integrable random sets in
cwk(E) (resp. ccb(E)).

Let S1
X ðAÞ (resp. SPe

X ðAÞ) the set of allA-measurable and Bochner integrable (resp. Pettis
integrable) selectors of X,

S
1
X ðAÞ ¼ ff ∈L1

EðAÞ : f ðωÞ∈XðωÞ a:s:g;
S
Pe
X ðAÞ ¼ ff ∈P1

EðAÞ : f ðωÞ∈XðωÞ a:s:g:
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X is said to be Aumann–Pettis integrable if it is scalarly integrable and SPe
X is nonempty. The

Aumann-Pettis integral of X over A∈A is defined by fR
A
f dP; f ∈ S

Pe
X ðAÞg.

Remark 1.

(1) Every Aumann–Pettis integrable random set X: Ω→ cc(E) is Pettis integrable in cc(E)
(see, El Amri and Hess [15, Theorem 3.7]) .

(2) A random set X defined from Ω to cwk(E) is Pettis integrable in cwk(E) if and only if
{δ*(x*, X(.)), x* ∈ B*} is uniformly integrable, see [15, Theorem 5.4]. In particular,
every Pettis integrable random set X in cwk(E) is Aumann–Pettis integrable.

Before going further, we recall first the following results, which are one of the basic tools in
the study of Pettis integrable multivalued random sets (resp. random variables).

Definition 25. A sequence ðXnÞn≥1 of random set with values in cc(E) is said to be adapted to
ðAnÞn≥1 if for any n ≥ 1, Xn is An-measurable.

Definition 26. Let v : A→E be a measure. We say that v is of σ-bounded variation if there
exists a countable partition ðAnÞn≥1ofΩ inA such that the restriction vjAn

of v

to An is a measure of bounded variation, for each n ≥ 1.

Proposition 27. [1, Proposition 3.1]
Let ðAnÞn∈N* be a sequence in cwk(E). Assume that there exists A∞ ∈ cwk(E) and a sequence
ðBnÞn∈N* in cwk(E) such that:

(1) M − limnAn ¼ A∞.

(2) limnHðAn;BnÞ ¼ 0.
Then

M � lim
n

An ¼ A∞ ¼ M � lim
n

Bn:

Proposition 28. [1, Proposition 3.2]
Let D* ¼ fe*m;m∈N*g be a dense sequence in B* with respect to the Mackey topology τ(E*, E).
Let ðAnÞn∈N* be a sequence in cwk(E) and A∞ds � liAn ∈ cwk(E).
Assume that

lim
n

δ*ðe*m;AnÞ ¼ δ*ðe*m;A∞Þ; a:s: ∀m∈N*:

Then the following equality holds

lim
n

dðx;AnÞ ¼ dðx;A∞Þ a:s: ∀ x∈E:

3. Existence of the conditional expectation for Pettis integrable random sets
indexed by stopping times
Before giving the first main result of this section, let us recall the following definition.

A function τ : Ω→N*∪fþ∞g is called a stopping time with respect to ðAnÞn∈N* if for
each n∈N*, fτ ¼ ng∈An. The set of all bounded stopping times with respect to An is
denoted by T.

For τ ∈ T, we define the σ-algebra

Aτ ¼ fA∈A; A \ fτ ¼ ng∈An; for each n≥ 1g:
and
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Xτ ¼
Xn¼max τ

n¼min τ

Xnχfτ¼ng:

It is well known in the literature that the conditional expectation of Pettis-integrable
random variables (resp. random sets) does not generally exist. Recently, several authors
have studied the existence of this operator (see, Akhiat, Castaing et Ezzaki [1], Akhiat,
El Harami et Ezzaki [16], El Allali et Ezzaki [12], El Harami et Ezzaki [17], Ezzaki et al. [18]
and Ziat [19]).

Theorem 31. [1, Theorem 4.3 ]
Let B be a sub σ-algebra of A and f be a Pettis integrable E-valued function such that

EBjf j∈ 0;∞½ �.
Then there exists a unique a.s. B -measurable, Pettis integrable E-valued function, denoted by

EBf , which enjoys the following property:
For every h∈L∞ðBÞ, one has Z

Ω
hEBfdP ¼

Z
Ω
hfdP:

Definition 32. Let B be a sub-σ-algebra of A and X be a Pettis integrable random set with
values in cwk(E). We say that the conditional expectation of X with respect to
B exists if:

(1) ∀f ∈ SPe
X ;EBf exists.

(2) There exists a B-measurable random set G such thatZ
A

GdP ¼
Z
A

XdP ∀ A∈B: (32.1)

Remark 2. If the conditional expectation of X exists, then it is unique a.s. In fact,

Assume that there exists G1 and G2 which satisfies (32.1). Then for each x* ∈ E*

δ*ðx*;G1Þ ¼ δ*ðx*;G2Þ a:e:
By [13, Lemma III.35], G1 5 G2 a.e.

Proposition 33. Let X be an Aumann-Pettis integrable random set with values in cwk(E)
such that

(1) ∀f ∈ SPe
X ;EBf exists,

(2) There exists a random set G, B-measurable such that

S
Pe
G ðBÞ ¼ fEBf=f ∈ S

Pe
X g

kkPe
:

Then EBX exists and EBX ¼ G.

Proof. Since G is B-measurable, it follows from El Amri and Hess [15, Theorem 3.9] that

I
ðBÞ
A ðGÞ ¼ IAðGÞ. ∀f ∈SPe

X ,

< x*;

Z
A

EBfdP >¼
Z
A

< x*; f > dP ≤ δ* x*;

Z
A

XdP

� �
∀x* ∈E*; ∀A∈B:
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Then

δ*ðx*; IAðGÞÞ≤ δ* x*;

Z
A

XdP

� �
:

Hence Z
A

GdP ¼ IAðGÞ⊂
Z
A

XdP:

Conversely, let f ∈ IA(X)

< x*;

Z
A

fdP >¼< x*;

Z
A

EBfdP > ≤ δ*ðx*; IAðGÞÞ ∀x* ∈E*; ∀A∈B:

Then

δ*ðx*; IAðXÞÞ≤ δ*ðx*; IAðGÞÞ; ∀x* ∈E*:

So, Z
A

XdP ⊂

Z
A

GdP:

Before giving the first main result of this section, let us present useful theorem due to El Allali
and Ezzaki [20], which will be used in the proof of theorem 36.

Theorem 34. Let B be a sub σ-algebra ofA and X be an Aumann-Pettis integrable random
set with values in cwk(E) such that there exists a countable partition ðBkÞk≥1 of
Ω in B such that Z

Bk

jX j dP < ∞; ∀k≥ 1:

Then.
(1) EBX exists, and it is with values in cwk(E).
(2) EBX ¼ cofEBfn; n≥ 1g a.s.,
(3) ∀ A∈B, R

A
XdP ¼ R

A
EBXdP;

(4) SPe
EBX ¼ fEBf =f ∈ S

Pe
X g

kkPe
.

Proof. The proof of (1) and (2) of the theorem where proved in [20, theorem 3.9], we will
provide some details of the proof for the sake of completeness.

Let M ¼ fEBf ; f ∈ SPe

X g. It is clear that M ⊂PEðBÞ, convex, nonempty and decomposable

with respect to B. Let D ¼ fx*n ; n≥ 1g be a subset of B* such that x*n ¼ y*n
ky*n k

with ðy*n Þn≥1 is a
dense sequence in E* with respect to the Mackey topology τ(E*, E).
Let ðEBfiÞi≥1 be a sequence in M. We shall prove that the random set

HðwÞ ¼ cofEBfiðwÞ; i≥ 1g; w∈Ω

is convex and weakly compact a.s.
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Let n≥ 1, Xn ¼ XjBn
,Hn ¼ HjBn

andBn ¼ fA \ Bn; A∈Bg. It follows from [21, Theorem 3.2]

that S1
Xn
is convex and weakly compact, then fEBn f ; f ∈ S

1
Xn
g is convex and weakly compact.

On the other hand S
1
Hn
ðBnÞ⊂ fEBn f ; f ∈ S

1
Xn
g. Indeed, let

GðwÞ ¼ fðEBfiÞjBn
ðwÞ; i≥ 1g ¼ fEBn fi jBn

ðwÞ; i≥ 1g; w∈Bn:

G isBnmeasurable and ∀i≥ 1,EBn fi jBn
∈ fEBn f ; f ∈ S

1
Xn
g, on the other hand fEBn f ; f ∈ S

1
Xn
g is

closed and decomposable with respect to Bn, then it follows from [22, Lemma 1.3] that

S
1
GðBnÞ⊂ fEBn f ; f ∈S

1
Xn
g, then S

1
Hn
ðBnÞ ¼ coS

1
GðBnÞ⊂ fEBn f ; f ∈ S

1
Xn
g.

Hence S1
Hn
ðBnÞ is convex and weakly compact since it is closed. So it follows from [21,

Theorem 3.2] that ∀n ≥ 1, Hn is convex and weakly compact a.s., then H is countably
supported a.s. with respect to D. Thus by [12, Theorem 35] there exist aB-measurable random

set L and a sequence ðfnÞn≥1⊂ S
Pe
X such that LðwÞ ¼ cofEBfnðwÞ; n≥ 1g for each w ∈ Ω and

S
Pe
L ðBÞ ¼ M

k:kPe .
Let A∈B such that P(A) 5 0 and L(w) ∈ cwk(E), ∀w ∈ Ω \ A. Let.

EBXðwÞ ¼ LðwÞ ;w∈ΩnA:
f0g ;w∈A:

�
EBX is a B-measurable random set with values in cwk(E) and S

Pe
EBX ðBÞ ¼ S

Pe
L ðBÞ ¼ M

k:kPe .
Moreover, EBXðwÞ ¼ cofEBfnðwÞ; n≥ 1g a.s.

(3) Since EBX exists by (1) it is clear from the definition of conditional expectation (see
definition 32)

∀ A∈B;
Z
A

XdP ¼
Z
A

EBXdP:

(4) It follows from proposition 33 with G ¼ EBX.

Proposition 35. Let X be an Aumann-Pettis integrable random set with values in cwk(E)
such that there exists a countable partition ðBnÞn≥1 of Ω in B that satisfiesZ

Bn

jX j dP < ∞; ∀n≥ 1: (35.1)

Then, fEBf= f ∈ S
Pe
X g is closed in P1

E.

Proof. From (35.1), every selection of X :χBn
is Bochner integrable then S1

X :χBnðBÞ ¼ SPe
X :χBn

ðBÞ ∀n≥ 1.

SinceX iswith values in cwk(E), by [21, Theorem3.2]SPe
X :χBn

isweakly compact for eachn≥ 1. So

n
EBf=f ∈ S

Pe
X :χBn

o
¼
n
EBf=f ∈ S

Pe
X :χBn

okkPe
∀n≥ 1:

Now, let g ∈P1
E such that there exists fn ∈ S

Pe
X such that

EBfn → g in P1
E :

AJMS
29,2

210



For each n≥ 1, g:χBn
∈

n
EBf =f ∈S

Pe
X :χBn

okkPe
¼
n
EBf =f ∈ S

Pe
X :χBn

o
. Then for each n≥ 1, there

exists hn ∈ S
Pe
X :χBn

such that gn ¼ EBhn.
Set h ¼Pn≥1hn:χBn

. It is clear that h is a selector of X.
Since X is Pettis integrable with values in cwk(E), h is Pettis integrable. On the other hand,

g ¼ EBh.
Hence fEBf= f ∈S

Pe
X g is closed in P1

E.

In the following theorem, we prove the existence of the conditional expectation of
Pettis integrable multifunctions indexed by bounded stopping times, which will allow
us to well define the notion of vector valued and set valued pramart in the Pettis
integration.

Theorem 36. Let Y be a positive random variable such that EA1Y < ∞ . Let ðXnÞn≥1 be a
sequence of Pettis integrable random sets with values in a family cwk(E) such

that

jXnj≤Y ∀n≥ 1. Let σ and τ ∈T such that τ ≥ σ. Then Xτ is a Pettis integrable random set with

values in cwk(E) and the conditional expectation of Xτ with respect toAσ exists, and satisfies the

following properties;

(1) SPe
EAσXτ

¼ fEAσ f =f ∈ SPe
Xτ
g,

(2) ∀A∈Aσ ;
R
A
XτdP ¼ R

A
EAσXτdP.

Proof. For τ ∈ T,

Xτ ¼
Xk¼maxτ

k¼minτ τ

Xkχ½τ¼k�:

∀k ≥ 1, Xk is a Pettis integrable random set, then Xτ is a Pettis integrable random set in

P1
cwkðEÞðAÞ.

In fact, Xτ is A-measurable, scalarly integrable and ∀x* ∈ E*, ∀A∈A
Z
A

δ*ðx*;XτÞdP ¼
Z
A

δ* x*;
Xk¼maxτ

k¼minτ

Xkχ½τ¼k�

 !
dP ¼

Xk¼maxτ

k¼minτ

Z
A

δ*ðx*;Xkχ½τ¼k�ÞdP

¼
Xk¼maxτ

k¼minτ

δ* x*;

Z
A

Xkχ ½τ¼k�dP

� �
¼ δ* x*;

Xk¼maxτ

k¼minτ

Z
A

Xkχ ½τ¼k�dP

 !

¼ δ* x*;

Z
A

Xk¼maxτ

k¼minτ

Xkχ½τ¼k�dP

 !
¼ δ* x*;

Z
A

XτdP

� �
:

Then Xτ is a Pettis integrable random set with values in cwk(E).
Now, we prove that the conditional expectation of Xτ with respect to Aσ exists.

Since Xτ ¼
Pk¼maxτ

k¼minτ Xkχ ½τ¼k�, ∀ω ∈ Ω, jXτ(ω)j ≤ Y(ω).
The fact that EA1Y < ∞, there exists a partition of Ω in A1 such that
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Z
Bk

jXτjdP ¼
Z
Bk

j
Xj¼maxτ

j¼minτ

Xjχ ½τ¼j�jdP

≤

Z
Bk

Xj¼maxτ

j¼minτ

jXjχ ½τ¼j�jdP

≤
Xj¼maxτ

j¼minτ

Z
Bk

YdP < ∞ ∀k≥ 1:

Since A1 ⊂Ak ∀k≥ 1 and

Xτ ¼
Xj¼maxτ

j¼minτ

Xjχ ½τ¼j�:

Thus by theorem 34, EAkXjχ ½τ¼j� exists ∀k ≥ 1.

The fact that,

EAσXτ ¼
Xk¼maxσ

k¼minσ

χ ½σ¼k�
Xj¼maxτ

j¼minτ

EAkXjχ½τ¼j�:

Then EAσXτ exists and from proposition 33,

S
Pe
EAσ Xτ

¼
n
EAσ f=f ∈S

Pe
Xτ

o
:

Now, we will show that ∀A∈Aσ;
R
A
XτdP ¼ R

A
EAσXτdP.

Let A∈Aσ and set Bj 5 A ∩ [σ 5 j]

δ* x*;

Z
Bj

EAσXτ

 !
dP ¼ δ* x*;

Z
Bj

EAjXτdP

 !
¼ δ* x*;

Z
Bj

EAj

Xmaxτ

k≥ j

Xkχ½τ¼k�dP

 !

¼
Z
Bj

δ* x*;EAj

Xmaxτ

k≥ j

Xkχ½τ¼k�

 !
dP

¼
Z
Bj

EAjδ* x*;
Xmaxτ

k≥ j

Xkχ½τ¼k�

 !
dP

¼
Z
Bj

δ*ðx*;XτÞdP

A ¼ ∪j¼maxσ
j¼minσ Bj so,
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δ* x*;

Z
A

EAσXτ

� �
dP ¼

Xj¼maxσ

j¼minσ

Z
Bj

EAjδ*ðx*;XτÞdP

¼
Xj¼maxσ

j¼minσ

Z
Bj

δ*ðx*;XτÞdP

¼
Z
A

δ*ðx*;XτÞdP

¼ δ* x*;

Z
A

XτdP

� �
∀A∈Aσ

Then Z
A

EAσXτdP ¼
Z
A

XτdP; ∀A∈Aσ:

Now, let us introduce some needed definitions and notions of pramarts (resp. subpramarts) in

P1
EðAÞ and in P1

cwkðEÞðAÞ.
Definition 37. A Pettis integrable adapted sequence ðXn;AnÞn≥1 with values in cc(E)

is said to be a martingale if for each k ≥ n ≥ 1, EAnXk exists and

Xn ¼ EAnXk a.s.

Definition 38. Let ðXn;AnÞn≥1 be an adapted sequence in P1
EðAÞ. Assume that for every σ, τ

∈ T, τ ≥ σ the conditional expectation EAσXτ ∈P1
EðAÞ exists.

We say that ðXn;AnÞn≥1 is a pramart if for every « > 0, there is σ« ∈ T such that,

∀ σ; τ∈T; τ≥ σ ≥ σε 0 PðkXσ � EAσXτk > εÞ≤ ε:

Definition 39. Let ðXn;AnÞn≥1 be an adapted sequence in L1
RðAÞ. We say that ðXn;AnÞn≥1 is

a subpramart if for every « > 0, there is σ« ∈ T such that,

∀ σ; τ∈T; τ≥ σ ≥ σε 0 PððXσ � EAσXτÞþ > εÞ≤ ε:

Definition 310. Let ðXn;AnÞn≥1 be an adapted sequence in P1
cwkðEÞðAÞ. Assume that for

every σ, τ ∈T, τ ≥ σ the conditional expectation EAσXτ ∈P1
cwkðEÞðAÞ exists.

We say that ðXn;AnÞn∈N is a pramart if for every « > 0, there is σ« ∈ T such that,

∀ σ; τ∈T; τ≥ σ ≥ σε 0 PðHðXσ;E
AσXτÞ > εÞ≤ ε:

Proposition 311. Let B be a sub σ-algebra of A and X: Ω → cwk(E) be a Pettis integrable

random set such that EBjX j < ∞ and f ∈P1
EðAÞ, then

f ∈ SPe
EBX if and only if

R
A
f ðωÞdP ∈

R
A
XðωÞdP for all A∈A.

Proof. Let X ∈P1
cwkðEÞðAÞ such that EBjX j < ∞ then by theorem 34, EBX exists and

S
Pe
EBX ¼ fEBf : f ∈ S

Pe
X g:

Let f ∈ S
Pe
EBX and ðx*mÞm≥1 be a dense sequence in E* with respect to Mackey topology τ(E*, E)
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and A∈A. Z
A

< x*m; f > dP ≤

Z
A

δ*ðx*m;EBXÞdP:

Then

< x*m;

Z
A

fdP > ≤ δ* x*m;

Z
A

EBXdP

� �
:

Hence Z
A

fdP ∈

Z
A

XdP for all A∈A:

Let show the converse implication, from [2, Lemma 3.4] ∀x* ∈ E*,

EBðδ*ðx*;XÞÞ ¼ δ*ðx*;EBXÞ a:s:
For every m ≥ 1

< x*m;

Z
A

fdP > ≤ δ* x*m;

Z
A

XdP

� �

So, Z
A

< x*m; f > dP ≤

Z
A

δ*ðx*m;XÞdP ¼
Z
A

EBδ*ðx*m;XÞdP for all A∈A:

0 < x*m; f ðωÞ > ≤ δ*ðx*m;EBXðωÞÞ a:s:

So, there exists a negligible N 5 ∪mNm such that ∀ ω ∈ Ω \ N, ∀x*m ∈D*,

< x*m; f ðωÞ > ≤ δ*ðx*m;EBXðωÞÞ:
By [13, Lemma III.34], f ðωÞ∈EBXðωÞ Then f ∈ S

Pe
EBX .

4. Convergence theorem of Pettis integrable vector valued and set valued
pramart
Before presenting our convergence results, we recall the following definition and
properties of multimeasure, which will be used in the proof of theorem 410 at the end of
this section.

Definition 41. let E be any Banach space. A multimeasure is a map

M: A→ 2En∅ such that M(∅) 5 {0} and for every ðAnÞn≥1 in A pairwise

disjoint we have

Mð∪nAnÞ ¼
X
n

MðAnÞ:
Given a map M: A→ cwkðEÞ:

(1) By Cost�e [23], M is a multimeasure if and only if for every x* ∈ E*, δ*(x*, M(.)) is a
finite scalar measure.
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(2) The variation of M is denoted by jMj and defined by

jMðAÞj ¼ sup
X
j

jMðAjÞj; A∈A:

The sup is taken on all the finite partitions of A in A.
Now, we present the following Lemmas, which will be used in the proof of our main result

in this section.

Lemma 42. Let ðCnÞn≥1 be a sequence of Pettis integrable random sets with values in cwk(E)
satisfying the following conditions:

(1) There exists a Pettis integrable random set L with values in cwk(E) such that Cn(.) ⊂ L(.)
∀n ≥ 1.

(2) limnδ*ðx*;CnðωÞÞ exists ∀ω ∈ Ω, ∀x* ∈ D*.
Then there exists a Pettis integrable random set C with values in cwk(E) such that

lim
n

δ*ðx*;CnðωÞÞ ¼ δ*ðx*;CðωÞÞ; ∀ x* ∈E*; ∀ ω∈Ω:

Proof. By assumption, Cn(ω) ⊂ L(ω), ∀ω ∈ Ω, ∀n ≥ 1, then ðδ*ð:;CnðωÞÞÞn≥1 is an
equicontinuous sequence with respect to the Mackey topology τ(E*, E).

Let ω ∈ Ω, and set r(.) 5 limnδ*(., Cn(ω)). So r(.) is continuous with respect to the Mackey
topology. Since r(.) is positively homogeneous and r(0) 5 0, then there exists C(ω) ∈ cc(E)
such that

lim
n

δ*ðx*;CnðωÞÞ ¼ δ*ðx*;CðωÞÞ; ∀x* ∈E*; ∀ω∈Ω:

So,

δ*ðx*;CðωÞÞ≤ δ*ðx*;LðωÞÞ; ∀ x* ∈E*; ∀ω∈Ω;

then C(ω) ∈ cwk(E), ∀ω ∈ Ω.
By [24, Lemma 5.2], C(.) is measurable.
Let us now prove that C(.) is Pettis integrable in cwk(E). By [15, Theorem 5.4] it is sufficient

to prove that {δ*(x*, C(.)) x* ∈ B*} is uniformly integrable.
For every x* ∈ B*

δ*ðx*;CðωÞÞþ ≤ δ*ðx*;LðωÞÞþ;
δ*ðx*;CðωÞÞ− ≤ δ*ð−x*;LðωÞÞþ:

Then

sup
x*∈B*

Z
Ω
jδ*ðx*;CðωÞÞjdP ≤ 2 sup

x*∈B*

Z
Ω
jδ*ðx*;LðωÞÞjdP < ∞:

For every « > 0, ∃δ > 0 such that ∀A∈A, P(A) < δ 0

sup
x*∈B*

Z
A

jδ*ðx*;LðωÞÞjdP < ε:
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Then

sup
x*∈B*

Z
A

jδ*ðx*;CðωÞÞjdP ≤ 2 sup
x*∈B*

Z
A

jδ*ðx*;LðωÞÞjdP < 2ε:

So, {δ*(x*, C(.)), x* ∈ B*} is uniformly integrable.

The first application of lemma 42 in P1
E is the following lemma, which proofs the convergence

in Pettis norm of Pettis integrable pramart. Since the notion of pramart is more general than
that of martingale, the result proved here generalizes the convergence in Pettis norm of
martingales proved in [25, lemma 1.4] and [18, lemma 2].

Lemma43. Assume that E* is separable. Let ðfn;AnÞn≥1be a pramart in P1
EðAÞ such that the

following conditions are satisfied:

(1) There is a Pettis integrable random set L: Ω→ cwk(E) such that fn(ω) ∈ L(ω) for all
n ≥ 1 and all ω ∈ Ω.

(2) For each n ≥ 1, EAn jLj < ∞.

Then there exists f ∈P1
EðAÞ such that.

kfn � fkPe → 0.

Proof. By ð2Þ∀n, ∀k≥ n EAn fk exists.
Since fn(ω) ∈ L(ω) then

sup
n

sup
x*∈B*

Z
Ω
j < x*; fnðωÞ > jdP ≤ 2 sup

x*∈B*

Z
Ω
jδ*ðx*;LðωÞÞjdP < ∞:

Then for each x* ∈ B*, ð< x*; fnð:Þ >;AnÞn≥1 is a L1-bounded pramart. Then from Theorem
1.1 in [26] ð< x*; fnð:Þ >Þn≥1 converges a.s. to wx*ð:Þ.

So by lemma 42 there exists f(.) such that for each x* ∈ E*,

wx*ð:Þ ¼< x*; f ð:Þ >
We conclude that

lim
n→∞

< x*; fnðωÞ >¼< x*; f ðωÞ >; a:s:∀x* ∈E*:

Since L is Pettis integrable with values in cwk(E) then {δ*(x*, L), x* ∈ B*} is uniformly
integrable, so it is not hard to see that ∀x*∈ B*, { < x*, fn(.) > , n≥ 1} is uniformly integrable
pramart. Then

∀x* ∈B* < x*; fnð:Þ > →
kk1 < x*; f ð:Þ > :

Since EAn jLj < ∞, there exists an A1-measurable partition ðBkÞk≥1 of Ω defined by

Bk ¼ fω; k� 1≤EA1 jLjðωÞ < kg:
For each k ≥ 1, set f kn ¼ fn1Bk

. So ðf kn;AnÞn≥1 is a bounded pramart in L1
EðAÞ.

Then fromAkhiat andEzzaki [3], there exists a uniquemartingale ðMk
nÞn≥1 inL1

EðAÞand a
pramart ðZk

nÞn≥1 in L1
EðAÞ such that
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f
k
n ¼ Mk

n þ Zk
n; ∀n≥ 1; jZk

nj→ 0 a:s:

Moreover for each x* ∈ E*,

< x*; f knð:Þ > → < x*; 1Bk
f ð:Þ > a:s:

But as < x*; Zk
nð:Þ > converge to Zero a.s.

We get

lim
n

< x*;Mk
nð:Þ >¼< x*; 1Bk

f ð:Þ > a:s:

Since ðMk
nÞn≥1 is a bounded martingale, so by Theorem 5.3.27 in Edgar [27].

Mk
nð:Þ→ 1Bk

f ð:Þ a:s: ∀k≥ 1

Hence, the sequence ðf knÞn≥1 converge a.s. to 1Bk
f ¼ f k ∀k≥ 1.

Set Mn ¼
P

n≥1M
k
n1Bk

.
So,

lim
n

Mn ¼ lim
n

fn ¼ f a:s:

Put.

f kðwÞ ¼ f ðωÞ; if ω∈Bk;
0; if ω∉Bk:

�

Then there exists a negligible set N 5 ∪kNk, such that

∀ω∈ΩnN ; lim
n

fnðωÞ ¼ f ðωÞ:

Then by [16, Theorem 2.4], we have kfn � fkPe → 0.
The second application of lemma 42 is the following equivalence between the convergence

in Pettis norm of a Pettis integrable adapted sequence and the nature of his scalar product.

Lemma 44. Let L be a Pettis integrable random set with values in cwk(E). Let ðfn;AnÞn≥1 be
an adapted sequence in P1

EðAÞ such that fn(.)∈ L(.), ∀n≥ 1 and EAn jLj < ∞a.s.
∀n ≥ 1.
Then

fn →
kkPe f 5 ∀ x* ∈E*; ð< x*; fn >Þn≥1 is a bounded pramart in L1

R:

Proof. If fn →
kkPe f , this implies that

lim
n

< x*; fn >¼< x*; f > in L1
R; ∀ x* ∈E*:

So

lim
n

< x*; fn >¼< x*; f > in probability; ∀ x* ∈E*:

On the other hand, since fn(.) ∈ L(.), ∀n ≥ 1, we have
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sup
n

sup
x*∈B*

Z
Ω
j < x*; fnðωÞ > jdP ≤ 2 sup

x*∈B*

Z
Ω
jδ*ðx*;LðωÞÞjdP < ∞:

So, by [28, Lemma 6] ∀ x* ∈E* ð< x*; fnð:Þ >;AnÞn≥1 is a bounded pramart in L1
R.

The converse is a direct consequence of Lemma 43.
By using theorem 36 and a direct application of lemma 42, we prove the convergence in

weak topology of cwk(E)-valued Pettis integrable pramart.

Lemma 45. Let ðXnÞn≥1 be a sequence of Pettis integrable pramart with values in cwk(E)
satisfying the following conditions:

(1) There exists a Pettis integrable random set Lwith values in cwk(E) such thatXn⊂ L
∀n ≥ 1,

(2) For each n ≥ 1, EAn jLj < ∞.
Then there exists a Pettis integrable random set X with values in cwk(E) such that

lim
n

δ*ðx*;XnðωÞÞ ¼ δ*ðx*;XðωÞÞ; a:s: ∀ x* ∈E*:

Proof. By theorem 36, EAσXτ exists ∀ σ, τ ∈T and τ ≥ σ. Then the notion of Pettis integrable
pramart with values in cwk(E) is well defined.

Since ðXnÞn≥1 is a pramart in P1
cwkðEÞðAÞ then ðδ*ðx*;XnÞÞn≥1 is a pramart too. By hypothesis

Xn(ω) ⊂ L(ω) for all n∈N* and for all ω ∈ Ω then

sup
n

sup
x*∈B*

Z
Ω
jδ*ðx*;XnðωÞÞjdP ≤ 2 sup

x*∈B*

Z
Ω
jδ*ðx*;LðωÞÞjdP < ∞:

So ðδ*ðx*;XnÞ;AnÞn≥1 is a L1-bounded pramart, we deduce that it admits a limit.

Then by lemma 42, there exists a Pettis integrable and measurable random set X with
values in cwk(E) such that

lim
n

δ*ðx*;XnÞ ¼ δ*ðx*;XÞ; a:s: ∀ x* ∈E*:

The following theorem is a new version in Pettis integration of theorem 3.3 in Choukairi [5]
provided in Bochner integration.

Theorem 46. Let ðXnÞn≥1 be a Pettis integrable pramart with values in cwk(E) that satisfying
the following conditions:

(1) There exists a Pettis integrable random set Lwith values in cwk(E) such that Xn ⊂ L
∀n ≥ 1,

(2) For each n ≥ 1, EAn jLj < ∞.
Then there exists a Pettis integrable random set X with values in cwk(E) such that.

(a) limn→∞δ*ðx*;
R
A
XndPÞ ¼ δ*ðx*; R

A
XdPÞ; ∀ x* ∈E* and for every A∈A:

(b) M − limn→∞E
AnX ¼ X a:s.

(c) s− li SPe
Xn
⊂SPe

X :

Proof. From lemma 45, there exists a Pettis integrable and measurable random set X with
values in cwk(E) such that

lim
n

δ*ðx*;XnÞ ¼ δ*ðx*;XÞ; a:s: ∀ x* ∈E*: (46.1)
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Byuniform integrability of {δ*(x*,L), x*∈B*}we conclude that {δ*(x*,Xn), x*∈B*, n≥ 1} is
uniformly integrable.

Then by (46.1) and the uniform integrability of {δ*(x*,Xn), n≥ 1} we have for x*∈E* and
for every A∈A,

lim
n→∞

δ* x*;

Z
A

XndP

� �
¼ lim

n→∞

Z
A

δ*ðx*;XnÞdP

¼
Z
A

δ*ðx*;XÞdP ¼ δ* x*;

Z
A

XdP

� �

(b) M − limn→∞E
AnX ¼ X a:s.

By (2) and theorem 34,EAnX exists for each n≥ 1 by El Allali et Ezzaki [12, Theorem 4.11], we
have

M � lim
n→∞

EAnXð:Þ ¼ Xð:Þ a:s:

(c) Let f ∈ s− li S
Pe
Xn
by definition of s � li, there exists ðfnÞn≥1∈ ðSPe

Xn
Þn≥1 such that

fn →
kkPe f :

Then by lemma 44, ð< x*; fnð:Þ >;AnÞ is a bounded pramart in L1
R; and

< x*; f >¼ lim
n

< x*; fn > in L1
R; ∀ x* ∈E*:

By (a),
R
A
fdP ∈

R
A
XdP; ∀ A∈A; ð46:2Þ

and

< x*m; f > ≤ δ*ðx*m;XÞ a:s:; for each x*m ∈D*:

Then there exists a negligible set N ¼ ∪mN
x*m

such that ∀ω ∈ Ω \ N, f(ω) ∈ X(ω).

Since X is in P1
cwkðEÞ, hence f is Pettis integrable. From (46.2) and proposition 311 f ∈ S

Pe
X .

The following lemma is a generalization in Pettis integration of lemma 6.1 in Castaing
et al. [29].

Lemma 47. Assume that ðx*mÞm≥1 is a dense sequence in B* with respect to the Mackey

topology. Let X ∈P1
cwkðEÞðAÞ such that EA1 jX j < ∞.

Let g be a positive random variable such that EA1g < ∞, and ðXnÞn≥1 be a pramart in

P1
cwkðEÞðAÞ such that jXnj ≤ g.

Then the following holds:

½δ*ðx*m;EAσXð:ÞÞ � δ*ðx*m;Xσð:ÞÞ�þ � EAσδ*ðx*m;EAτXð:ÞÞ
� δ*ðx*m;Xτð:ÞÞþ ≤ jδ*ðx*m;EAσXτð:ÞÞ � δ*ðx*m;Xσð:ÞÞj≤HðEAσXτð:Þ;Xσð:ÞÞ a:s:

for all m ≥ 1, σ, τ ∈ T, τ ≥ σ.
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Proof. From theorem 36, EAσXτ exists ∀τ ≥ σ and EAσX exists.
We may apply the techniques developed by Castaing et al. [29].
For each m, n ≥ 1, let us set

wm;nð:Þ ¼ δ*ðx*m;EAnXð:ÞÞ � δ*ðx*m;Xnð:ÞÞ:

Let σ, τ ∈ T, τ ≥ σ and let

wm;τð:Þ ¼ δ*ðx*m;EAτXð:ÞÞ � δ*ðx*m;Xτð:ÞÞ;

wm;σð:Þ ¼ δ*ðx*m;EAσXð:ÞÞ � δ*ðx*m;Xσð:ÞÞ:

Now we prove that jEAσwm;τð:Þj≤EAσ jwm;τð:Þj a.s.
Let ðx*mÞm≥1 be a dense sequence in B*. Since ðXn;AnÞn≥1 is a sequence of Pettis integrable

pramart with values in cwk(E), then for each x*m ∈B* we have ðδ*ðx*m;Xnð:ÞÞÞ is a real valued
pramart.

For each x*m ∈B* by theorem 36,Z
A

EAσ δ*ðx*m;Xτð:ÞÞdP ¼
Z
A

δ*ðx*m;Xτð:ÞÞdP

¼ δ* x*m;

Z
A

Xτð:ÞdP
� �

¼ δ* x*m;

Z
A

EAσXτð:ÞdP
� �

¼
Z
A

δ*ðx*m;EAσXτð:ÞÞdP:

Then

EAσ δ*ðx*m;Xτð:ÞÞ ¼ δ*ðx*m;EAσXτð:ÞÞ a:s:

Thus by applying the Jensen’s inequality for every m≥ 1 jEAσwm;τð:Þj≤EAσ jwm;τð:Þj a.s.
Then we have,

wm;σð:Þþ � EAσwm;τð:Þþ ¼ 1

2
½wm;σð:Þ þ jwm;σð:Þj � EAσwm;τð:Þ � EAσ ðjwm;τð:ÞjÞ�

¼ 1

2
½wm;σð:Þ � EAσwm;τð:Þ þ jwm;σð:Þj � EAσ jwm;τð:Þj�

≤
1

2
½wm;σð:Þ � EAσwm;τð:Þ þ jwm;σð:Þ � EAσwm;τð:Þj�

¼ ½wm;σð:Þ � EAσwm;τð:Þ�þ

¼ ½δ*ðx*m;EAσXτð:ÞÞ � δ*ðx*m;Xσð:ÞÞ�þ

≤ HðEAσXτð:Þ;Xσð:ÞÞ a:s:
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Consequently, by definition VIII.1.14 of Egghe [6], ðð½δ*ðx*m;EAnXÞ− δ*ðx*m;XnÞ�
þÞn≥ 1Þm≥1 is

uniform sequence of subpramarts.
Now, we present some convergence results of set valued Pettis integrable pramarts with

convex weakly compact values in a separable Banach space E.

Theorem 48. Let ðXnÞn≥1 be a Pettis integrable pramart with values in cwk(E) satisfying the
following conditions:

(1) There exists a Pettis integrable random set Lwith values in cwk(E) such that Xn⊂L∀n≥ 1.

(2) For each n ≥ 1, EAn jLj < ∞ .
Then there exists a Pettis integrable random set X with values in cwk(E) such that.

(a) limn→∞HðEAnX ;XnÞ ¼ 0 a:s.

(b)M − limn→∞Xn ¼ X a:s.

(c) limn→∞dðx;XnÞ ¼ dðx;XÞ a:s: ∀ x∈E.

Proof. (a) We will prove that limn→∞HðEAnX ;XnÞ ¼ 0 a:s.
By theorem 46, we have

M � lim
n→∞

EAnX ¼ X a:s:

From lemma 45,

lim
n→∞

δ*ðx*;XnÞ ¼ δ*ðx*;XÞ a:s: ∀ x* ∈E*: (48.1)

By (48.1) there exists a negligible N such that ∀ω ∈ Ω \ N, ∀x* ∈ E*

δ*ðx*;XðωÞÞ ¼ lim
n→∞

δ*ðx*;XnðωÞÞ≤ δ*ðx*;LðωÞÞ

Then X(ω) ⊂ L(ω) so, EAn jXð:Þj≤EAn jLð:Þj a.s. ∀n ≥ 1.
From (1) and (2) EA1 jXnj≤EA1 jLj < ∞ and ðXn;AnÞn≥1 is a pramart.

Let ðx*k Þk≥1 be a dense sequence in B* with respect to the Mackey topology. By lemma 47

the sequence ððδ*ðx*k ;EAnXÞ− δ*ðx*k ;XnÞÞn≥ 1Þk≥1 is uniform subpramart.

By (2) there exists a partition ðAjÞj≥1 of Ω in A1 defined by

Aj ¼ fj� 1≤EA1 jLj < jg: (48.2)

Since jXnj ≤ jLj, then
HðEAnX ;XnÞ≤EAn jLj þ jLj a:s:

So, Z
Aj

HðEAnX ;XnÞdP ≤

Z
Aj

ðEAn jLj þ jLjÞdP:
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For each n ≥ 1, Z
Aj

HðEAnX ;XnÞdP ≤

Z
Aj

EAn jLjdP þ
Z
Aj

jLjdP: (48.3)

Since Aj ∈A1 then Aj ∈An.
So, by definition of the conditional expectation of the positive random variableZ

Aj

EAn jLjdP ¼
Z
Aj

jLjdP:

By (48.2) and (48.3),Z
Aj

HðEAnX ;XnÞdP ≤ 2

Z
Aj

jLjdP ¼ 2

Z
Aj

EA1 jLjdP ≤ 2jPðAjÞ < ∞:

Then

sup
n≥1

Z
Aj

HðEAnX ;XnÞdP < ∞:

So for every j ≥ 1,

sup
n≥1

Z
Aj

sup
k

ðδ*ðx*k;EAnXÞ � δ*ðx*k;XnÞÞþdP ≤ sup
n≥1

Z
Aj

HðEAnX ;XnÞdP < ∞:

Then ðð½δ*ðx*k ;EAnXÞ− δ*ðx*k ;XnÞ�
þÞn≥ 1Þk≥1 is a bounded uniform sequence of positive

subpramarts on Aj. Applying Egghe [6, Lemma VIII.1.15], there exists a negligible Nk
j such

that ∀ω∈AjnNk
j

lim
n→∞

sup
k

ðδ*ðx*k;EAnXðωÞÞ � δ*ðx*k;XnðωÞÞÞ ¼ sup
k

lim
n→∞

ðδ*ðx*k;EAnXðωÞÞ � δ*ðx*k;XnðωÞÞÞ

¼ 0:

Since ðAjÞj≥1 is a partition of Ω then there exists a negligible N ¼ ∪j≥1∪k≥1N
k
j such that

∀ω ∈ Ω\N

lim
n→∞

HðEAnXðωÞ;XnðωÞÞ ¼ 0:

(b) Since limn→∞HðEAnX ;XnÞ ¼ 0 a:s. so, (b) is deduced from proposition 27.
(c) Now we will prove that limnd(x, Xn(.)) 5 d(x, X(.)), a.s. ∀ x ∈ E.
From the scalarly convergence of ðXnÞn≥1 and proposition 28 we get

lim
n

dðx;Xnð:ÞÞ ¼ dðx;Xð:ÞÞ; a:s: ∀ x∈E:

When the pramarts ðXnÞn≥1 in theorem 48 are single-valued, we have the following corollary.

Corollary 49. Let ðXn;AnÞn≥1 be a sequence of Pettis integrable E-valued pramart such that:

(1) There exists a Pettis integrable random set L with values in cwk(E) such that
Xn(ω) ∈ L(ω) ∀n ≥ 1 and ω ∈ Ω,

(2) For each n ≥ 1, EAn jLj < ∞.
Then there exists a Pettis integrable random variable X with values in E such that
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lim
n→∞

kEAnX � Xnk ¼ 0 a:s:

So that lim
n→∞

kXn � Xk ¼ 0 a:s:

Proof. Since ðXn;AnÞn≥1 is a Pettis integrable pramart and Xn(ω) ∈ L(ω) for each n ≥ 1 and
each ω ∈ Ω then

sup
n

sup
x*∈B*

Z
Ω
j < x*;XnðωÞ > jdP ≤ 2 sup

x*∈B*

Z
Ω
jδ*ðx*;LðωÞÞjdP < ∞:

So, the L1-bounded pramart ð< x*;Xnð:Þ >Þn≥1 converges a.s. Then limn < x*, Xn(.) > exists.

Since L is in P1
cwkðEÞ by lemma 42, there exists X ∈P1

E such that

lim
n→∞

< x*;Xn >¼< x*;X > a:s:; ∀ x* ∈E*:

By (2) and theorem 31, EAnX exists. So consider the regular martingale EAnX such that

Xn ¼ EAnX þ ðXn � EAnXÞ:

By theorem 48, we have

lim
n→∞

kEAnX � Xnk ¼ 0 a:s:

By applying Akhiat, Castaing et Ezzaki [1, Proposition 5.1] we have limn→∞E
AnX ¼ X a:s.

Then we conclude that

lim
n→∞

kXn � Xk ¼ 0 a:s:

The following theorem stated in Pettis integration generalizes a result obtained in Castaing
and Salvadori [4, theorem 6.9] in Bochner integration.

Theorem 410. Assume that E has RNP and E* has RNP.
Let ðXnÞn≥1 be a Pettis integrable pramart with values in P1

cwkðEÞðAÞ satisfying the following
conditions:

(1) jXnj≤ g for all n ≥ 1 where g is a positive function such that EA1g < ∞,

(2) fδ*ðx*;XnÞ; n≥ 1g is uniformly integrable,

(3) For each A∈A, the set {∪n ≥ 1

R
AXndP, n ≥ 1} is relatively weakly compact.

Then there exists a Pettis integrable random set X with values in cwk(E) such that.

Pettis
integrable

multivalued
pramart

223



(a) limn→∞HðEAnX ;XnÞ ¼ 0 a:s.

(b)M − limn→∞Xn ¼ X a:s.

(c) limn→∞dðx;XnÞ ¼ dðx;XÞ a:s: ∀ x∈E.

Proof. We will prove that

lim
n→∞

δ*ðx*;Xnð:ÞÞ ¼ δ*ðx*;Xð:ÞÞ; a:s: ∀ x* ∈E*:

Further, from (2) for each x* ∈ E*, the L1-bounded pramart ðδ*ðx*;XnÞÞn≥1 converge a.s.
In other words for each x* ∈ E* there exists a function wx* such that

lim
n

δ*ðx*;XnÞ ¼ wx* a:s: (410.1)

Now assume that for each A∈A, the set {RAXndP, n ≥ 1} is include in a convex weakly
compact subset denoted by KA.

Set ∀n ≥ 1 Mn(A) 5
R
AXndP, for each A∈A.

Since ðXn;AnÞn≥1 is with values in cwk(E). Then by El Amri and Hess [15, Theorem 5.4]

Mn(.) is a cwk(E)-valued.
The fact that, ðXn;AnÞn≥1 is Pettis integrable, implies thatMn is a multimeasure for all n≥ 1.

δ*ðx*;MnðAÞÞ ¼ δ* x*;

Z
A

XndP

� �
¼
Z
A

δ*ðx*;XnÞdP:

∀x* ∈ E* set,

ψAðx*Þ ¼
Z
A

lim
n
δ*ðx*;XnÞdP:

By (2) and (410.1) a sequence (δ*ðx*;Xnð:ÞÞn≥1 converges in L1 to wx* ∀x* ∈E*.

Then ∀A∈A,

lim
n

Z
A

δ*ðx*;XnÞdP ¼
Z
A

lim
n
δ*ðx*;XnÞdP ¼

Z
A

wx*dP: (410.2)

So,

ψAðx*Þ ¼ lim
n
δ* x*;

Z
A

XndP

� �
≤ δ*ðx*;KAÞ:

Since for each. A∈A MnðAÞ ¼
R
A
XndP

So,

lim
n
δ*ðx*;MnðAÞÞ ¼ ψAðx*Þ≤ δ*ðx*;KAÞ ∀x* ∈E*:
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By lemma 42 there existsMðAÞ∈P1
cwkðEÞðAÞ such that,

lim
n
δ*ðx*;MnðAÞÞ ¼ δ*ðx*;MðAÞÞ ¼ ψAðx*Þ; for all x* ∈E* ; A∈A:

By (410.2)

δ*ðx*;MðAÞÞ ¼
Z
A

wx*dP:

Since wx* ∈L1 then for every x* ∈ E*, δ*(x*, M(.)) is a finite scalar measure. So M is a
multimeasure.

Let proof thatM is of σ-bounded variation.
As EA1g < ∞, then there exists ðBkÞk≥1 a partition of Ω in A1 such thatZ

Bk

gdP < ∞; ∀k≥ 1:

Let Bj fixed and ðAiÞi≥1 a partition of Bj then

jMðAi \ BjÞj ¼ sup
x*∈B*

lim
n
δ*ðx*;MnðAi \ BjÞÞ

≤ lim sup
n

sup
x*∈B*

δ*ðx*;MnðAi \ BjÞÞ

≤ sup
n

Z
Ai\Bj

jXnjdP ≤

Z
Ai\Bj

gdP

≤

Z
Bj

gdP < ∞:

Then

Xn
i¼1

jMðAi \ BjÞj≤
Xn
i¼1

Z
Ai\Bj

gdP ¼
Z
Bj

gdP:

So, M is of σ-bounded variation then by theorem 4.8 in Ziat [19] there exists A−measurable

multifunction X in P1
cwkðEÞðAÞ such that

MðAÞ ¼
Z
A

XdP ∀ A∈A:

Then

lim
n
δ* x*;

Z
A

XndP

� �
¼ δ* x*;

Z
A

XdP

� �

¼
Z
A

δ*ðx*;XÞdP

¼
Z
A

lim
n
δ*ðx*;XnÞdP:

Hence

δ*ðx*;XÞ ¼ lim
n
δ*ðx*;XnÞ a:s:; ∀ x* ∈E*:

If we put jLj 5 g, so (a), (b) and (c) follow as in the proof of theorem 48.
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