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Abstract

Purpose — In this paper, the authors take the first step in the study of constructive methods by using Sobolev
polynomials.

Design/methodology/approach — To do that, the authors use the connection formulas between Sobolev
polynomials and classical Laguerre polynomials, as well as the well-known Fourier coefficients for these latter.
Findings — Then, the authors compute explicit formulas for the Fourier coefficients of some families of
Laguerre-Sobolev type orthogonal polynomials over a finite interval. The authors also describe an oscillatory
region in each case as a reasonable choice for approximation purposes.

Originality/value — In order to take the first step in the study of constructive methods by using Sobolev
polynomials, this paper deals with Fourier coefficients for certain families of polynomials orthogonal with
respect to the Sobolev type inner product. As far as the authors know, this particular problem has not been
addressed in the existing literature.

Keywords Fourier coefficients, Sobolev type orthogonal polynomials, Laguerre polynomials
Paper type Research paper

1. Introduction

Within the framework of spectral approximation, and to recover values of smooth functions
with exponential accurate, it is customary to use Fourier series for periodic problems and
series of classical orthogonal polynomials for nonperiodic problems. Nevertheless, if it deals
with piecewise smooth function, estimates by means of partial sums are unhealthy;
oscillations do not decrease near discontinuities with partial sums of higher order; and far of
them, convergence order is low. Thus, the global properties from Fourier coefficients are not
enough to obtain local information. This lack of uniform convergence is known as Gibbs
phenomenon. A priori, this is a serious issue considering the large number of applications
modeled through piecewise smooth function. In literature, methods to face the Gibbs
phenomenon in reconstruction of piecewise smooth functions from partial sums have been
widely studied. For instance, in Refs. [1, 2], the problem to construct piecewise smooth
function values with exponential accuracy at all points is solved by means of approximations
with Fourier-Gegenbauer coefficients expansions. These are the so-called Gegenbauer
reconstruction methods where the expansion of Gegenbauer polynomials in its Fourier series
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is crucial. In Ref. [3], the Gegenbauer reconstruction methods are revisited and analyzed in
order to prove that Gegenbauer reconstruction is also effective for Fourier—Bessel series. To
do that, the author obtains coefficients Fourier for Jacobi polynomials and also for classical
orthogonal polynomials with unbounded support (Laguerre, Hermite).

On the other hand, consider a vector of Borel positive measures (uq, i1, - - -, 4y:), on the real
line, with finite moments and p, with continuous support. Then, we define the Sobolev inner
product on the space of polynomials with real coefficients.

0.0 = [+ 3 [0 W L)
R = Jr

A sequence of polynomials {S, },., deg S, = n, is orthogonal with respect to (1.1) if
<Sm Sm>S = Knémm Kn > 0.

The sequence {S, },,,,1s said to be a sequence of Sobolev polynomials orthogonal with respect
to (1.1). If yy, is discrete, for k = 1, . . ., m, the above inner product and the sequence {S, }asoare
said to be of Sobolev type. Sobolev orthogonal polynomials have been widely studied in the
last three decades. The first publication on Sobolev polynomials goes back to 1962 in Ref. [4],
which deals with certain extremal problem related to smooth polynomial approximation
whose solution is posed by means of Sobolev—Legendre polynomials. Such a problem is
formulated previously in Ref. [5], although not in terms of Sobolev orthogonality. It has been
documented as the approximations with Sobolev—Fourier series from smooth functions in the
corresponding Sobolev space improve approximations made through standard families of
orthogonal polynomials (see Ref. [6]). Additional applications include spectral methods in
numerical analysis for ordinary differential equations and partial differential equations, and
generalization of Gauss quadrature formulas, among others. The nice surveys[7, 8] are highly
recommended, as well as the paper [9] and references therein. In order to take the first step in
the study of constructive methods by using Sobolev polynomials, this paper deals with
Fourier coefficients for certain families of polynomials orthogonal with respect to the Sobolev
type inner product (1.1) when p is the classical and absolutely continuous Laguerre measure
on [0, oo0). In the next section, we propose the basic background with respect to Laguerre
polynomials, and we present the particular Sobolev—Laguerre type families of polynomials to
be discussed. In Section 3, we obtain the respective Fourier coefficients by using of similar
techniques as the presented in Ref. [10]. Since the orthogonality interval for Laguerre
polynomials is unbounded, we will turn special attention to oscillation regions for the Sobolev
polynomials.

2. Preliminaries
Let [P be the space of polynomials with real coefficients

2.1 Classical Laguerre polynomials and generalities
The classical Laguerre polynomials {L } _., witha> — 1, are orthogonal with respect to the

. n>0
inner product:

b, Q= / P, pgeP.

For an arbitrary polynomial p, k(p) will denote the leading coefficient of p. In the sequel, to
normalize Laguerre polynomials, we assume that k(L}):=(—1)"/n. These polynomials
satisfy the three terms recurrence relation (TTRR in short),
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(n+ DL, (x) = 2n+a+1-2)L (%) — (n+ a)L;_, (%), 21

for n > 0 with the initial conditions L%, :==0and Lj = 1. Forz > 1, the zeros of every L; are all
real, simple and are located in (0, co) (see Ref. [11]). In the sequel, {xn‘i}?:1 will denote the zeros
of L] ordered in increasing order.

Definition 1. Let p be a polynomial with real zeros. An oscillatory region [ for p is any
bounded interval containing their zeros, in such a way that p is monotone outside /.

With respect to an oscillatory region of classical Laguerre polynomials, we get the next.

Proposition 1. (11). For a > — 1 and n > 0, the n zevos of L, are into [0, £, ], where

1
é/n,a =2n+a+1+ \/(2n+a+1)2+l_l_a2.
We consider, for a nonnegative integer #, the functions ﬂfn’b defined as (see Ref. [10]),

b
p(z) = / X" dx = 27" ml (e e (az) — e e, (b2)), 2.2

where ¢,, is the m — th partial sum of the Maclaurin series for the exponential function and
[, b] is a bounded interval.

As a consequence of this definition, it is possible to show that if x = &£ + 6, ¢ = >5%and
d= b*“, we get

1
/ (Ef + 5) —mk:dé«: zké/gﬁg (Zﬂ'k) (23)

1

In this way, the next result for the Fourier series for Laguerre polynomials is presented
in Ref. [10].

Theorem 1. Let[a, b]be anintervalwith — co <a <b < oo and & e[f 1,1l e = 2“, 5= b*‘l
The Fourier coefficients for L} (e€ + 5), in the local variable &, are given by

7 _ 1 ikd/e - (_1) N4\ lﬂk

L, (k) =3¢ ; . ( )ﬂt . ©4)

2.2 Quasi-orthogonality and zeros
Let {P,},,be a sequence of polynomials orthogonal with respect to a positive Borel measure
u supported on [a, b], with — co <a < b < o0, €.

b
/ P(x0)ddu = 6,,K,, K, >0, k=1,....n

Definition 2 Let » be a nonnegative integer and R, a polynomlal with degree n > »
satlsfylngj Ry(x Vkdpy = 0fork=0,1,2,.. ,n—7r—1 andf R, (x)x""du#0. Then, R, is
said to be quasi- orthogonal of order » on [a b] and w1th respect to p.

Of course, if » = 0, then the orthogonality is recovered. The next result describes a necessary
and sufficient condition for quasi-orthogonality.

Proposition 2. (12]. R 1S quast- on‘hogonal of order v on[a, blwith respect to p if and only if
there exist numbers b,;, i = 0,1, ..., 7, with b,ob,, # 0, such that



Ry(x) = bualPos. (25)

With respect to zeros of quasi-orthogonal polynomials, the next result is well known.

Proposition 3. (12)). If R,, is quasi-orthogonal of order v with respect to p on [a, b], then R,
has n — v simple zeros on (a, b).

Suppose that R, is quasi-orthogonal of order » with respect to y on [a, b] and R,, and P, are
monic. It is well known that the monic orthogonal polynomials {P,},, can be obtained by
means of a TTRR:

Poa(®) = (Apax + Byt ) Pu(x) = CoaPaa (), n20, (26)
and we define B, ;1= k&gf”) wland Cypq = k“}:(]lil In the particular case, when 7 = 2, from
(2.5), we get R,,(x) = by, 0Pu(x) + by 1Py 1(x) + by, 2P, o), and we also define a,, := il i 1>)” Land
by = M The next results refer to behavior and localization of zeros of quasi-orthogonal

k(R
polyn0m1als for » = 2.

Theorem 2. ([13)). If b,, < C,, the n zeros of R,, are real and simples.

Theorem 3. ([13). Suppose that {x,“} ", and {y;};_, are the zeros of P, and R,
respectively, and ordered in increasing order.

1) b, <C,if and only if

Yna < Xn-1,1 < Yn2 < Xn-1.2 << yn,n—l < xn—Ln—l < Ynn- (27)
bll n, B)l .
@ 0<b,<Coanda, > =) if ang only if
ynJ < an < ynz <Hp2 < - < xn,n—l < Yun < xnﬂ- (28)
by (Xnn+Bn) . .
@B 0<b,<C,anda, < —%zf and only if
X1 < Yna < xn,Z < yn,Z <0< Ynn-1 < xn,n < yn,n- (29)

Theorem 4. ([13)). Suppose that b,, < C, and b, .1 < C,,1 and we define
k(Pn—l)Pn (x)

2(X) = 75— 2.10
f( ) k(Pn)Pn,l(ﬁC) ( )
Fori=1,2..,n
fn+1< n,i)ﬁl (ynz> =+ an+1fn( n,i) =+ bn+1 < 07
if and only if
yn+171 < yn,l < Ynt12 < yn,z <0< yn+1,n < yn,n < yn+1¢n+1a (211)

2.3 Laguerre—Sobolev type orthogonal polynomials, nondiagonal case
If p € P and P(x):= (p(v), p' (v)), we define the Laguerre—Sobolev type inner product

(0,q)s, = (0.0)e + P(0)'AQ(0), 2.12)
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(M, 2
WhereAf(/1 M

sequence of polynomials orthogonal with respect to (2.12) such that k(S;,) = k(L) for n > 0.
Theorem 5. ((14]). For every n €N

n20

), with MoM; > 0 and 2 such that detA > 0. Let {S;;} _ be the

SHx) = L2 (x) + Aol 2 (%) 4 Bool 3 (), (2.13)
where
R

2.3.1 Laguerre—Sobolev type polynomials of higher order derivatives. Let {SZ ,ZV } be
orthogonal with respect to Sobolev inner product #20

0.0 = (0,00 + WH™ (0)g"™(0), 2.14)

with W'> 0, m a nonnegative integer and p, g € P. Moreover k(S;; Z ) = k(L)
Theorem 6. ([15)). For n > m

m+1

Sy Z A LR ( 2.15)

n,m

where

B Tm+1) 8,y nta n—k
A¢110*1+ka1(_1) (n—Wl—k) Wl+1—k7

and fork=1,...m+1

—F
A= o () (L2

SU(W

nm>?

With respect to zeros of every we enunciate the next results.

Theorem 7. (See Ref. [16]) For every n, the zeros of S w arereal, simple and at most one of
them is outside (0, 00). If S*V has a zero in (— oo, 0] then n > m + 1. In addition, if for no, S

n. m N, M
has a negative zero, then SZ o has a negative zero for n > ny.
Theorem 8. Assume thatn>m + 1. If {v,,}_, are the zeros of Sn > Orderedinincreasing

order, then v,; < x,; fori =1, ..., n

Theorem 9. Ifp, is the negatwe zero of S%
— th positive zero of S

o W then —mb,, m1 < Py Where Oy 41 denotes the

2.3.2 Christoffel tmnsformatzons and Laguerre—Sobolev type inner product with mass outside
support. Given £ <0, and an integer £ > 1, we consider the weight @, x(¥) = (¥ — &Fe*x* on
[0, o0). This is a Christoffel perturbation of the classical Laguerre measure (see Ref. [11]).

{Lﬁz"’k)}mo denotes the respective sequence of orthogonal polynomials, where



k(L,(f‘"k)) = k(L)) for every n and L,(Z“’O) =L An algebraic connection between polynomials
orthogonal with respect to the weight @, .(¥) is as follows (see Ref. [11]),

_ L(a,k) _ L(aﬁk—l) _Liﬁ_l)(‘f) L(a,/e_l) 216
(x é:) n (x) n+1 (JC) Lw’k_l)(f) n (x) ( )

PR . . . 0!
Assume {x][q]z} ) are the zeros of L k) in increasing order, with xL ]Z =X
ifi S :

Proposition 4. (17). Fori=1,...,

[k 1 [k]

< -1 ©2.17)

< x n+1,+1

Now we consider the Sobolev—Laguerre type inner product:

b, Dasn = b, D +Mp(&)a(&) +N'(£)q'(8), (2.18)
with M, N >0, £ <0. Let {SZ’M’N }M) be the respective sequence of orthogonal polynomials
such that k(S) = k(L) for n > 0.

Theorem 10. ([17). There exist constants Dy, D,,1 and D,, 5 such that

SN () = D, oL% (%) + Dy (x — E)L*? (1) + Dyo(x — &L (x), 2.19)
where:
() IFMN> 0, then Dy~ 828 na 2 f)s/:”)”) " and Dy ~
@ IfM=0and N> 0, then D, ~ \/7 Dy nanan,2~4”2—@

3) IfN—OcmdM>0thenDno ﬁp ~—LandD,5 = 0.

Let {vn 1} be the zeros of S Nin increasing order. To describe results on zeros of every

S"M N we present the next results.

Proposition 5. ([17). The zeros of S;; MN are real, simple and at most one of them is outside
[&, o).
Proposition 6. ([18)). If & < v,,; then

Up1 < Xp1 <0 < Upp < Xpp- (220)

Proposition 7. ([17). Suppose that v,; < & Then

28 — x| <01 <E <V <Ay < < Oy <X ©2.21)

3. Fourier coefficients for Laguerre-Sobolev type polynomials

In this section, we describe the Fourier coefficients associated to Laguerre-Sobolev type
polynomials presented in the above section, computed on any finite interval [a, b]. For
approximation purposes, we will find an oscillatory region for every family of Sobolev—
Laguerre polynomials, in order to exhibit a reasonable choose for the interval [, b].
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3.1 Nondiagonal case
Let {SZ}H>0 be the sequence of Sobolev polynomials orthogonal with respect to the inner

product (2.12). From (2.13), this sequence is quasi-orthogonal of order 2 with respect to the
classical Laguerre polynomials with parameter a + 2. Then, we consider (2.1) for a + 2, and
from (2.13) we define

ay = An,aa bn = Bn.m
and
Bi=-2n+a+3), Ca=nn+a+2).

Then, in the language of Theorem 3, we get the next result.
Corollary 1. If

Bii1a (xn+1 w1 — (Cn+a+ 3))

0 < Buyra <+ a+2), Apra< o TaTD) ER
0<Bua<m-T)ntatl), An> Bua(11" ~ n +a+ 1) (32)
e T n—1)n+a+1) '
and
Joet i) Vi) + Ansrafy i) + Busra <0, 3.3)
fori= . n, then Sy, has n real and simple zeros in the interval [0,,, ,.»]. Here, {y,;}"_,

and { ‘”2}_ . represent the zeros of S, and L:*Z, respectively, ordered in increasing orvder.
i
Proof. According to Theorem 3, Part 3, inequalities in (3.1) are equivalent to

a+2 a+2 a+2
xn+1,1 < Yn11 < xn+1‘2 < Yn12 < < g < xn+1‘n+l < Ynr1ip+1-

and from Part 2, inequalities in (3.2), are equivalent to

2
ynl<x1 <J’nz<xff§ e <X 1<y,m<x

ﬂ N—= nn

In the other hand, from Theorem 4, (3.1) is equivalent to
yn+l 1 < ynl < Ynr1, 2 < yn 90 < -0 < yn+l,n < yn‘n < yn+1.,n+1 .

Finally, since the zeros of L¢** and L{ are interlaced, we obtain

a+2 a+2
nn < xn+1 n+1t

The above inequalities imply that

a+2
nn

< x(z+2

2
xaim < Vnr1l <Vl <00 <V < X, PP R

n

From the Proposition 1, we get the result. O

On the other hand, we suppose that x € [«, b], and we make the transformation x = &£ + 6,
where £ €[ — 1, 1], e = 25%and 6 = &2 Then



0
~

Sy (e€+6) :Z “(R)e™,

=0
and by using of (2.13) we get

=3 / (L3 (e +8) + AuaLi) ' (€ + 8) + By '3 (€ + 8)) e dg

1
2

1 a+2 —ikné
+§B,m Ln 5 (e€+ 8)e" ™ dE,

1 ~a+2 ~a+2

= 5L, )+ AMLn k) + B,,aLn_Z(k),

and by using of (2.4) we obtain

Si(k)
1 ~a+2 1 ~a+2 1 ~a+2
= 5L () + 3AuL, k) + 5Bl (B),
(

IRALS -1 ”+0’+2 ab 17k

%’ [;:0 # n— 4
(1) (n+a+1 oo (7 imk

et \n-1-1)"

n—2 t .
(-1 n+a 5 (i7k
B G G (T

= %eikﬁ/s ((_nl!)n {ﬁﬂ’b (?) —n(n+a+2)p" (Mk) — Apanl, (Mkﬂ

n—2 t -
=1) s (imkR\ [ (n+a+2 n+a+1
* T (7){( n—t >+A”'“<n—1—t

We summarize in the next.

Proposition 8. Let [a, b] be a bounded interval. Assume x in [a, b), and x = &£ + 5, where
te[-11] e= 1’%" and 6 = b# The coefficients of Fourier for S;(e€ + &), in the local

variable &, are giving by
S(k)

_l iké /e (_1)12 a,b @ _ a.,b @
— 4€e { Jin - nn+a+2)p"

) - (7))

2 ( ‘ ink\ [ (n+a+2 n+a+1l
Z - ;7 +Aﬂ‘(l - 1 4
— 1 n—t n—1-t
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3.2 Higher order derivatives
n,m

{S" W} . represents the sequence of polynomials orthogonal with respect to (2.14). As
n> . ..
before, we propose a bounded interval that containing the # zeros of S oW . for n large enough.

Corollary 2. Forn >m + 1, the zeros of S®W are located in [ — Mm%y mi1, Cnal

n,m
Proof. From Theorem 8, 0y, ;41 < %m+1, and from Theorem 9, the result is

—MXpmi1 < an |:|

As before, we assume x € [¢, b]and x = &£ + 8, where £ €[ — 1, 1], & = 25%and 6 = 242,
From (2.15) we have

Sy = [ sikiee s oetear

m+1
2 ZAnq </ Lna—-;q) 8§ + 5 _lk”§d§>

m+1
Aa+q
2 ZA" q n—q
and from (2.4) we arrive to the next.

Proposition 9. Let [a, b] a bounded interval and n > m + 1. Consider the tmnsformation
x=cé+ S wherex€la bl Ee[—1,1, e = ”‘T‘land 5= b*“ The Fourier series for S, with
the local variable &, is given by

Syom (€E+8) = ZSM )ée,

nm’

k=—co
where
W, 1}3()/5 = L (= n+a » (i
Snm - ;; t' AWI n—q—t ﬁ;z € N
3.3 Mass outside support
Assume that
Za ad (34)
with @y =al; =5 (T?) (see Ref. [11]). From (2.16), for & > 1,
(r = OLP (@) = LV (@) = dh L (), (35)
with
gein _ L@

n+lg T L(aﬁk—l)(é:)'

n



Then, replacing (3.4) in (3.5) we obtain

Xl:an,; - Zf“w ¥ = an+1 n+1xn+1 + Z( n+1] - nili 51)512;[‘/@_1])95]-7
J
or equivalently
aple ¢ Z (et - an) o - eayy
e Y ) a2 ) (- ),

then we get the equations vt
1
n+1 410

R ( k1) -1 k-1
fa;,([)] = ( nilé @y, [ ]_a:ﬁl‘,o])v

alk]
a?’t n a

and
i k1) alk-1 Je=1 .
afa,””—awl—i—dnilg an][ ] aﬁu], j=1,...,n

Lemma 1. If

n

k 1k 0
L;“ )(x) = a;’} ]xf, aZJH ay;,

=0

and & <0, then
K a,[k-1]
nr[1] - an+1n+1’

and the coefficients an T

a3 k-1) k 1 J[e—1
aZ}] :5 ( nJ 1+dnilg : aZJ[rl,i]>7
with the initial condition
— (a.k-1) a[k-1 a,[k—1
5 ( n+1,¢ an([) - ani1,0]>'
If &£ =0 then

k] [k—l]
an,n aﬂ+1¢1+1 ’

and forj=1,...,n

a[k]

[e-1] (ak=1) ja[k-1]
o a. d a a

a il — Onr10 Gy

=a

According to (2.17), we can deduce that

[ (2l

X1 <xnl < X1

<l <ooo<alh

n,1

<...7
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and

[] [k-1] [k-2]
nn < xn+1 n+1 < xn+2 n+2 << Xn+knths

and as consequence we get the next.
Lemma 2. The zeros of Lf;”m are located in [%,1, Pr + kol

Since the Fourier series for L,(f“'k)(sn +6) in the local variable 5 is determined by the
coefficients

>a) 1! (k) —ikm
L, (k):é L (en + 8)e™"™"dy,

by using of Lemma 1, (2.2) and (2.3) we have the next.

Proposition 10. Fourier coefficients forL ) on a finite interval[a, b), in the local variable 1,
withx =en+6,ne[—1,1] e= bz‘lcmdéf b are defined by

~(ak) eik‘s/‘f " alk] pab ink
L, (k) =—_ > a (7) 3.6)

=0

Let {SZ’M N } . be the sequence of polynomials orthogonal with respect to (2.18).
n>

Corollary 3. Forn > 2, the zeros of Sy™*

Proof. From (2.17) we get

are into [2& — X113, X1 ni1}

[1] (2l [1] 1
Xy 11 < Xy 1.1 < x1127 and Xn2 < X2 < Xp413s

thus

L]l 1 < Xpg13- @.7)

2 2] 1]

In the same way, x,,_ L1 <X 11 < Xun and x,, < x,[i]n < Xpt1p+1, thus

2
x,[zlln 1 < X141 (38)

On the other hand, from (2.20), (2.21), (3.7) and (3.8), we obtain

2]

2‘);: — Xn+13 < 25 - xn—l,l <Oy <0 < Uy < Xn+1n+1

O

On the one hand, and on a finite interval [, b], we compute the Fourier coefficients for every
S*MN and in terms of the local variable 5. Indeed, if
SN (en + 5) =
&

d aMN
n

0
by using of (2.19)



~a.M .N

S, (k)
_1

1
D) Dn‘oLn (k) + Dﬂ,lé/ (x _ g)L(aQ) (x)e‘ik”fdg
-1

n—1
1 271 (a4) —ikné
4Dy [ 6= L (e

Then, from (3.5), for 2 = 2 and % = 4, we obtain

(r = L () = LV () — dy L) (),
and

(r = &Ly () = @=L (0) — 4 (x — OL (x)
C L) — (4 4+ )L ) + AL ),

respectively.
As a consequence, (2.19) can be written as

S () = DuoL(®) + Do (L () — di L) (1)
Dua (L2 = (@) + a0 L) + L ()

n—1,
= D, oL%(x) + D,y L () — Dyad LY ()
: a2 a, a2
D, L (x) + i LY () + 1t L (),

n—1

where
2 3 : 3) (a2
7:3?,1 = _<d;(f:' = dfil?:)» 7’:,?2 = DnWdeza—l.,)fdf(za—l,)f‘ (3.9)

Then, Fourier coefficients are given by
~a,M.N

S m)

n

1! al)y(a
-3/ [Duokiten+ )+ DL en + )~ Dd P L (en + 0)

DL o1+ 8) 4 LD e + )+ 72, o+ 8)] ey

(a.1)

~a ~(a.1) a1 @

= n.OLn (Wl) +D114,1Ln (Wl) - Dﬂ-ld;(z.fl)Ln—l (Wl)
~(a2) ~(@2) ~(a2)

+D, 2L, (m) + 733?,1[‘%1 (m) + ?’Z:?anfz (m)

and if we use (2.4) and (3.6) we get
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~a,M.N

S, (m)

n

e;ké/e iTm lkS/e 1 b iTm

n0 o Z n]ﬁa < ) nl Zaw[ ﬁf < )
z'5 -1 [1] iTm
nld Z N— 1] < )

=0

1}25/( im ezkﬁ/e n—1 T
a2
Dy ol -( )+t ke ()

=0

s zké/e n—2 a[2 mm
+yn‘§2 2 n 2]

We summarize in the next.

Theorem 11. Consider x = en+ 6, wherene[—1,1], ¢ = b‘T“cmdé = b;—“ Foreveryn > 2,
the Fourier coefficients for the polynomial SZ’M N defined in (2.19), and in the local variable 1,
are given by

—alIN oole 02
Sn (Wl) = 28 |:(Dnn/; +chn 1£+Qn 1nl§
2 (el el al2) pas (1M
8 a.,b
‘f’Z(‘Dn/: +Qn 1]§+7,¢5261n zJﬂ ( e >>:|:

j=0

where
o [(1m
(I)Z][,];] = (Dn OanJ + Dn la + Dn ZQ,U )ﬂ] ’ (T) )

Ly a, b
QZ—U@ - ( D“ ldné an 1,7 +yn§1a: 1])ﬁ]a ( >

and yfl'jél, y;‘_‘éz are given in (3.9).
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