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Abstract

Purpose – In this paper, the explicit multistep, explicit multistep-SP and implicit multistep iterative sequences
are introduced in the context of modular function spaces and proven to converge to the fixed point of a
multivalued map T such that PT

ρ , an associate multivalued map, is a ρ-contractive-like mapping.
Design/methodology/approach – The concepts of relative ρ-stability and weak ρ-stability are introduced,
and conditions in which these multistep iterations are relatively ρ-stable, weakly ρ-stable and ρ-stable are
established for the newly introduced strong ρ-quasi-contractive-like class of maps.
Findings – Noor type, Ishikawa type and Mann type iterative sequences are deduced as corollaries in
this study.
Originality/value – The results obtained in this work are complementary to those proved in normed and
metric spaces in the literature.

Keywords Multistep iterations, Modular function spaces, Strong ρ-contractions, Relative ρ-stability,
Weakly ρ-stability
Paper type Research paper

1. Introduction and preliminary definitions
Modular function spaces are well-known generalizations of both function and sequence
variants of many important spaces such as Calderon–Lozanovskii, Kothe, Lebesgue, Lorentz,
Musielak–Orlicz, Orlicz and Orlicz–Lorentz spaces. Their applications are also very useful.
There is huge interest in quasi-contractive mappings in modular function spaces mainly
because of the richness of structure of modular function spaces: apart from being F-spaces in
amore general setting, they are equippedwithmodular equivalents of norm ormetric notions
and also endowed with convergence in submeasure. It is worthy to mention that modular-
type conditions are far more natural as their assumptions can be easily verified than their
corresponding metrics or norms, especially when related to fixed-point results and
applications to integral-type operators. More so, there are some fixed-point results that can
be proved only using the framework of modular function spaces. Thus, results in fixed-point
theory inmodular function spaces and those in normed andmetric spaces are complementary
(see, e.g. [1]). Different researchers have proved very useful fixed-points results in the context
of modular function spaces (see [1–6] for details).

The following background definitions in [1, 3, 7] are useful in proving the main results in
this manuscript:
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Let Ω be a nonempty set and Σ be a nontrivial σ − algebra of subsets of Ω: Let P be a
δ− ring of subsets ofΩsuch thatE ∩ A∈P for anyE ∈P andA∈Σ:Assume there exists an
increasing sequence ðKnÞn∈ℕ⊂P such that Ω ¼ ∪n∈ℕKn:

Let E represent the linear space of all simple functions with supports from P, that is,
functions s ¼ Pn

k¼1

αkIAk
, where ðαkÞk∈ℕ is a sequence of real numbers, ðAkÞk∈ℕ is a sequence of

disjoint sets in P and IA represents the characteristic function of the set A in Ω:
Let M∞ represent the space of all extended measurable functions, that is, all functions

f : Ω→ ½−∞; ∞� such that there exists a sequence ðgnÞ⊂ E satisfying jgnj≤ jf j and
gnðωÞ→ f ðωÞ for all ω∈Ω:

Definition 1.1. ([7]). Let ρ : M∞ → ½0; ∞� be a nontrivial, convex and even function. ρ is
said to be a regular convex function pseudomodular if:

(1) ρð0Þ ¼ 0;

(2) ρ is monotone, that is, jf j≤ jgj on Ω implies ρðf Þ≤ ρðgÞ; where f ; g∈M∞;

(3) ρ is orthogonally subadditive, that is, ρðfIA∪BÞ≤ ρðfIAÞ þ ρðfIBÞ for any A; B∈Ω
such that A∩B≠f; with f ∈M∞;

(4) ρ has Fatou’s property, that is, jfnðωÞj↑jf ðωÞj for allω∈Ω implies ρðfnÞ↑ρðf Þ; where
f ∈M∞;

(5) ρ is order continuous in E, that is, ðgnÞ⊂ E and jgnðωÞj↓0for allω∈Ω implies ρðgnÞ↓0:

Concepts similar to those in measure spaces are defined for function pseudomodular ρ: a set
A∈Σ is said to be ρ-null if ρðfIAÞ ¼ 0 ∀f ∈ E; a property is said to hold ρ-almost everywhere
(ρ-a.e.) on Σ if the set for which it does not hold is ρ-null.

The following set is defined:

MðΩ; Σ; P; ρÞ ¼ ff ∈M∞ : jf j < ∞ ρ� a:e:g;
where each f ∈M∞ is actually an equivalence class of functions equal ρ-a.e. We will writeM
instead of MðΩ; Σ; P; ρÞwhen no confusion arises.

Definition 1.2. ([1]). Let ρ be a regular function pseudomodular.

(1) ρ is said to be a regular function modular if ρðf Þ ¼ 0 implies f ¼ 0 ρ-a.e.

(2) ρ is said to be a regular function semimodular if ρðαf Þ ¼ 0 for every α > 0 implies
f ¼ 0 ρ-a.e.

A regular convex function modular ρ satisfies the following properties (see [3])

(1) ρðf Þ ¼ 0 if f ¼ 0ρ -a.e.

(2) ρðαf Þ ¼ ρðf Þ for every scalar α such that jαj ¼ 1, where f ∈M:

(3) ρðαf þ βgÞ≤ αρðf Þ þ βρðgÞ if αþ β ¼ 1, α; β≥ 0 and f ; g ∈M:

The class of all nonzero regular convex function modulars on Ω is denoted by ℜ.

Definition 1.3. ([7]). A convex functionmodular ρ defines themodular function space Lρ as

Lρ ¼ ff ∈M : ρðλf Þ→ 0 as λ→ 0g:
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Lρ is a normed linear space with respect to

jfρj ¼ inf

�
α > 0 : ρ

�
f

α

�
≤ 1

�

which is known as the Luxemburg norm.

Definition 1.4. ([7]). Let Lρ be a modular space. The sequence ffng⊂Lρ is called:

(1) ρ−convergent to f ∈Lρ if ρðfn − f Þ→ 0 as n→∞;

(2) ρ−Cauchy, if ρðfn − fmÞ→ 0 as n; m→∞.

Remark 1.1. ρ−convergent sequence implies ρ−Cauchy sequence if and only if ρ
satisfies the Δ2 – condition given in the definition below. However, ρ does not satisfy the
triangle inequality.

Definition 1.5. ([7]). A nonzero regular convex function ρ is said to satisfy the Δ2 −

condition, if supn≥1ρð2fn; DkÞ→ 0 as k→∞ whenever fDkg↓0== and supn≥1ρðfn; DkÞ→ 0
as k→∞:

Definition 1.6. ([7]). Let Lρ be a modular space and D⊂Lρ.

The ρ-distance from f ∈Lρ to the set D is given by:

distρðf ; DÞ ¼ inffρðf � hÞ : h∈Dg:
A subset D⊂Lρ is called:

(1) ρ−closed if the ρ− limit of a ρ−convergent sequence of D always belongs to D;

(2) ρ−a.e. closed if the ρ−a.e. limit of a ρ−a.e. convergent sequence ofD always belongs
to D;

(3) ρ−compact if every sequence in D has a ρ−convergent subsequence in D;

(4) ρ−a.e. compact if every sequence in D has a ρ−a.e. convergent subsequence in D;

(5) ρ−bounded if diamρðDÞ ¼ supfρðf − gÞ : f ; g∈Dg< ∞:

(6) ρ−proximal if for each f ∈Lρ there exists an element g ∈D such that
ρðf − gÞ ¼ distρðf ; DÞ.

The family of nonempty ρ-bounded ρ-proximal subsets of D is denoted by PρðDÞ; the
family of nonempty ρ-closed ρ-bounded subsets of D by CρðDÞ and the family of ρ-compact
subsets of D by KρðDÞ:
Definition 1.7. ([7]). Let Lρ be amodular space. A function f ∈Lρ is called a fixed point of a
multivalued mappingT : Lρ →PρðDÞ if f ∈Tf . The set of all fixed points ofT is represented
by FρðTÞ so that:

FρðTÞ ¼ ff ∈Lρ : f ∈Tfg:
The following set is also defined:

PT
ρ ðf Þ ¼ fg ∈Tf : ρðf � gÞ ¼ distρðf ; Tf Þg:

Zamfirescu [8] in 1972 proved the following theorem as a generalization of the Banach fixed-
point theorem:
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Theorem1.1. ([8]). LetX be a complete metric space andT : X →X a Zamfirescu operator
satisfying:

dðTx; TyÞ≤ hmax

�
dðx; yÞ; dðx; TxÞ þ dðy; TyÞ

2
;
dðx; TyÞ þ dðy; TxÞ�

2

�
; (1.1)

where 0≤ h < 1. Then, T has a unique fixed point and the Picard iteration converges to p
for any x0 ∈X.

Observe that in a Banach space setting, condition (1.1) implies

kTx� Tyk≤ δkx� yk þ 2δkx� Txk; δ ¼ max

�
h;

h

2� h

�
∈ ½0; 1Þ (1.2)

Osilike [9] used the following contractive definition: for each x; y∈X ; there exist δ∈ ½0; 1Þ
and L≥ 0 such that jjTx� Tyjj≤ δkx� yk þ Ljjx� Txjj: (1.3)

Imoru andOlatinwo [10] proved some stability results using the following general contractive
definition: for each x; y∈X ; there exist δ∈ ½0; 1Þ and a monotone increasing function
w : ℝþ →ℝþ with wð0Þ ¼ 0 such that

kTx� Tyk≤ δkx� yk þ wðjjx� TxjjÞ: (1.4)

Observe that (1.4) generalizes (1.3) and (1.2). The map T considered in (1.2)–(1.4) is single-
valued. Now, we state the generalizations of (1.2)–(1.4) to multivalued mappings, as
conformed to literature. (e.g. see [7]).

Let Hρð$; $Þ be the ρ−Hausdorff distance on the family CρðLρÞ of nonempty ρ-closed
ρ-bounded subsets of Lρ, that is,

HρðA; BÞ ¼ max
�
sup
f∈A

distρðf ; BÞ; sup
g∈B

distρðg; AÞ
�
; A; B∈CρðLρÞ:

A multivalued map T : D→CρðLρÞ is said to be a:

(1) ρ−contraction mapping if there exists a constant δ∈ ½0; 1Þ such that

HρðTf ; TgÞ≤ δρðf � gÞ; ∀f ; g ∈D: (1.5)

(2) ρ−Zamfirescu mapping if

HρðTf ; TgÞ≤ δρðf � gÞ þ 2δρðh� f Þ; ∀f ; g ∈D ∀h∈Tf : (1.6)

(3) ρ−quasi-contractive mapping if

HρðTf ; TgÞ≤ δρðf � gÞ þ Lρðh� f Þ; ∀f ; g ∈D ∀h∈Tf ; L≥ 0: (1.7)

(4) ρ−quasi-contractive-like mapping if

HρðTf ; TgÞ≤ δρðf � gÞ þ wðρðh� f ÞÞ; ∀f ; g ∈D ∀h∈Tf : (1.8)

where w : ℝþ →ℝþ is a monotone increasing function with wð0Þ ¼ 0:
Convergence and stability of fixed-point iterative sequences for single mappingT are two

very vital concepts in fixed-point theory and applications. Some of the results of colossal
value in this work are those in [9–20]. Rhoades and Soltuz [21] introduced the multistep
iteration and proved its equivalence with Mann and Ishikawa iterations. Olaleru and Akewe
[22] proved convergence of multistep iteration for a pair of mappings ðS; TÞ
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We now introduce the following iterative sequences in the framework of modular function
spaces and use them to prove new fixed-point theorems.

Let T : D→PρðDÞ be a multivalued mapping.
The explicit multistep iterative sequence ffng∞n¼0 ⊂D is defined by:8>>>>><

>>>>>:

f0 ∈ D

fnþ1 ¼ ð1� αnÞfn þ αnv
1
n;

gin ¼ �
1� βin

	
fn þ βinv

iþ1
n ; i ¼ 1; 2; . . . ; k� 2

gk−1n ¼ �
1� βk−1n

	
fn þ βk−1n un; n ¼ 0; 1; 2; . . .

(1.9)

where un ∈PT
ρ ðfnÞ, vin ∈PT

ρ ðginÞ, i ¼ 1; 2; . . . ; k− 1, and the sequences fαng∞n¼0 and fβing
∞

n¼0,

i ¼ 1; 2; . . . ; k− 1; are in ½0; 1Þ such that
P∞

n¼0αn ¼ ∞:
The explicit Noor iterative sequence ffng∞n¼0 ⊂D is defined by:8>>>>><

>>>>>:

f0 ∈ D

fnþ1 ¼ ð1� αnÞfn þ αnv
1
n;

g1n ¼ �
1� β1n

	
fn þ β1nv

2
n;

g2n ¼ �
1� β2n

	
fn þ β2nun; n ¼ 0; 1; 2; . . .

(1.10)

where un ∈PT
ρ ðfnÞ; v1n ∈PT

ρ ðg1nÞ; v2n ∈PT
ρ ðg2nÞ; and the sequences fαng∞n¼0, fβ1ng

∞

n¼0 and

fβ2ng
∞

n¼0 are in ½0; 1Þ such that
P∞

n¼0αn ¼ ∞:
The explicit Ishikawa iterative sequence ffng∞n¼0 ⊂D is defined by:8>><

>>:
f0 ∈ D

fnþ1 ¼ ð1� αnÞfn þ αnv
1
n;

g1n ¼ �
1� β1n

	
fn þ β1nun; n ¼ 0; 1; 2; . . .

(1.11)

where un ∈PT
ρ ðfnÞ; v1n ∈PT

ρ ðg1nÞ; and the sequences fαng∞n¼0 and fβ1ng
∞

n¼0 are in ½0; 1Þ such
that

P∞

n¼0αn ¼ ∞:
The explicit Mann iterative sequence ffng∞n¼0 ⊂D is defined by:�

f0 ∈ D

fnþ1 ¼ ð1� αnÞfn þ αnun; n ¼ 0; 1; 2; . . .
(1.12)

where un ∈PT
ρ ðfnÞ; fαng∞n¼0 ⊂ ½0; 1Þ andP∞

n¼0αn ¼ ∞:

The explicit multistep-SP iterative sequence ffng∞n¼0 ⊂D is defined by:8>>>>><
>>>>>:

f0 ∈ D

fnþ1 ¼ ð1� αnÞg1n þ αnv
1
n

gin ¼ �
1� βin

	
giþ1
n þ βinv

iþ1
n ; i ¼ 1; 2; . . . ; k� 2

gk−1n ¼ �
1� βk−1n

	
fn þ βk−1n un; n ¼ 0; 1; 2; . . .

(1.13)

where un ∈PT
ρ ðfnÞ; vin ∈PT

ρ ðginÞ, i ¼ 1; 2; . . . ; k− 1, and the sequences fαng∞n¼0 and fβing
∞

n¼0,

i ¼ 1; 2; . . . ; k− 1, are in ½0; 1Þ such that
P∞

n¼0αn ¼ ∞:
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The explicit SP iterative sequence ffng∞n¼0 ⊂D is defined by:

8>>>>><
>>>>>:

f0 ∈ D

fnþ1 ¼ ð1� αnÞg1n þ αnv
1
n;

g1n ¼ �
1� β1n

	
g2n þ β1nv

2
n;

g2n ¼ �
1� β2n

	
fn þ β2nun; n ¼ 0; 1; 2; . . .

(1.14)

where un ∈PT
ρ ðfnÞ; v1n ∈PT

ρ ðg1nÞ; v2n ∈PT
ρ ðg2nÞ; and the sequences fαng∞n¼0; fβ1ng

∞

n¼0, and

fβ2ng
∞

n¼0 are in ½0; 1Þ such that
P∞

0 αn ¼ ∞:
The implicit multistep iterative sequence ffng∞n¼0 ⊂D is defined by:

8>>>>>><
>>>>>>:

f0 ∈ D

fnþ1 ¼ ð1� αnÞf 1n þ αnunþ1;

f in ¼ �
1� βin

	
f iþ1
n þ βinu

i
n; i ¼ 1; 2; . . . ; k� 2

f k−1n ¼ �
1� βk−1n

	
fn þ βk−1n uk−1n ; n ¼ 0; 1; 2; . . .

(1.15)

where unþ1 ∈PT
ρ ðfnÞ; uin ∈PT

ρ ðf inÞ; i ¼ 1; 2; . . . ; k− 1, and the sequences fαng∞n¼0 and

fβing
∞

n¼0; i ¼ 1; 2; . . . ; k− 1, are in ½0; 1Þ such that
P∞

n¼0αn ¼ ∞:
It should be noted that the implicit multistep iterative sequence exists if and only if T

satisfies the property (I) as follows:

ðIÞ : ∀h∈D ∀β∈ ð0; 1Þ ∃f ∈D ∃g ∈PT
ρ ðf Þ : f ¼ ð1� βÞhþ βg:

The implicit Noor iterative sequence ffng∞n¼0 ⊂D is defined by:

8>>>>>><
>>>>>>:

f0 ∈ D

fnþ1 ¼ ð1� αnÞf 1n þ αnunþ1;

f 1n ¼ �
1� β1n

	
f 2n þ β1nu

1
n;

f 2n ¼ �
1� β2n

	
fn þ β2nu

2
n; n ¼ 0; 1; 2; . . .

(1.16)

where unþ1 ∈PT
ρ ðfnþ1Þ; u1n ∈PT

ρ ðf 1n Þ; u2n ∈PT
ρ ðf 2n Þ; and the sequences fαng∞n¼0; fβ1ng

∞

n¼0, and

fβ2ng
∞

n¼0 are in ½0; 1Þ such that
P∞

n¼0αn ¼ ∞:
The implicit Ishikawa iterative sequence ffng∞n¼0 ⊂D is defined by:

8>><
>>:

f0 ∈ D

fnþ1 ¼ ð1� αnÞf 1n þ αnunþ1;

f 1n ¼ �
1� β1n

	
fn þ β1nu

1
n; n ¼ 0; 1; 2; . . .

(1.17)

where unþ1 ∈ PT
ρ ðfnþ1Þ; u1n ∈PT

ρ ðf 1n Þ; fαng∞n¼0 ⊂ ½0; 1Þ, fβ1ng
∞

n¼0 ⊂ ½0; 1Þ andP∞

n¼0αn ¼ ∞:
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The implicit Mann iterative sequence ffng∞n¼0 ⊂D is defined by:�
f0 ∈ D

fnþ1 ¼ ð1� αnÞfn þ αnunþ1; n ¼ 0; 1; 2; . . .
(1.18)

where unþ1 ∈PT
ρ ðfnþ1Þ; fαng∞n¼0 ⊂ ½0; 1Þ andP∞

n¼0αn ¼ ∞:

The following Lemmas will be needed in proving the main results.

Lemma 1.1. ([3]). Let T : D→PρðDÞ be a multivalued mapping and PT
ρ ðf Þ ¼ fg ∈Tf :

ρðf − gÞ ¼ distρðf ; Tf Þg: Then the following are equivalent:

(1) f ∈FρðTÞ; that is, f ∈Tf :

(2) PT
ρ ðf Þ ¼ ffg:

(3) f ∈FðPT
ρ ðf ÞÞ; that is, f ∈PT

ρ ðf Þ: Further FρðTÞ ¼ FðPT
ρ ðf ÞÞ where FðPT

ρ ðf ÞÞ
represent the set of fixed points of PT

ρ ðf Þ:

Lemma1.2. (see [13]). Let δ be a real number satisfying 0≤ δ < 1and fεng∞n¼0 and fτng∞n¼0
two sequences of positive or zero numbers, less than 1, such that limn→∞εn ¼ 0 andP∞

n¼0τn ¼ ∞. Then any sequence of positive numbers fung∞n¼0 satisfying any of the
following properties converges to 0:

(1) unþ1 ≤ δun þ εn for all n ¼ 0; 1; 2; . . .

(2) unþ1 ≤ ð1− τnÞun for all n ¼ 0; 1; 2; . . .

(3) unþ1 ≤ εn þ ð1− τnÞun for all n ¼ 0; 1; 2; . . . if in addition, fτng∞n¼0 is bounded away
from 0.

2. Convergence results
2.1 Strong convergence results for explicit multistep iterative sequences in modular function
spaces

Theorem 2.1. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ, and T : D→PρðDÞ be a multivalued mapping such that PT

ρ is a ρ−quasi-

contractive-like mapping, satisfying contractive-like condition (1.8). Suppose that FρðTÞ≠∅.
Let f0 ∈D and ffng⊂Dbe defined by the explicit multistep iterative sequence (1.9), where the

sequences fαng∞n¼0; fβing
∞

n¼0 ⊂ ½0; 1Þ, ði ¼ 1; 2; . . . ; k− 1Þ are such thatP∞

0 αn ¼ ∞:Then
the explicit multistep iterative sequence (1.9) converges strongly to the fixed point of T:

Proof. Let f ∈FρðTÞ; from Lemma 1.1, PT
ρ ðf Þ ¼ ffg and FρðTÞ ¼ FðPT

ρ ðf ÞÞ.
Using the explicit multistep iterative sequence (1.9) and the convexity of ρ, we obtain the

following estimate:

ρðfnþ1 � f Þ ¼ ρ½ð1� αnÞfn þ αnv
1
n � f



(2.1)

¼ ρ
�ð1� αnÞðfn � f Þ þ αn

�
v1n � f

	

≤ð1� αnÞρðfn � f Þ þ αnρ

�
v1n � f

	
:

v1n ∈PT
ρ ðg1nÞ and PT

ρ ðf Þ ¼ ffg imply that:
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ρ
�
v1n � f

	 ¼ distρ
�
v1n; P

T
ρ ðf Þ

	
≤Hρ

�
PT
ρ ðg1n

	
; PT

ρ ðf ÞÞ;

which combined with (2.1) yields:

ρðfnþ1 � f Þ≤ ð1� αnÞρðfn � f Þ þ αnHρ

�
PT
ρ ðg1n

	
; PT

ρ ðf ÞÞ: (2.2)

In (1.8), letting g ¼ g1n and noting that PT
ρ ðf Þ ¼ ffg and wð0Þ ¼ 0, we have:

Hρ

�
PT
ρ ðg1n

	
; PT

ρ ðf ÞÞ≤ δρ
�
g1n � f

	þ wðf � hÞ ∀h∈PT
ρ ðf Þ (2.3)

≤ δρ
�
g1n � f

	
:

Substituting (2.3) in (2.2), we obtain

ρðfnþ1 � f Þ≤ ð1� αnÞρðfn � f Þ þ δαnρ
�
g1n � f

	
: (2.4)

Similarly, from (1.9) and the convexity of ρ,

ρ
�
g1n � f

	 ¼ ρ
��
1� β1n

	
fn þ β1nv

2
n � f



(2.5)

¼ ρ
��
1� β1n

	ðfn � f Þ þ β1n
�
v2n � f

	


≤
�
1� β1n

	
ρðfn � f Þ þ β1nρ

�
v2n � f

	
:

v2n ∈PT
ρ ðg2nÞ and PT

ρ ðf Þ ¼ ffg imply that:

ρ
�
v2n � f

	 ¼ distρ
�
v2n; P

T
ρ ðf Þ

	
≤Hρ

�
PT
ρ ðg2n

	
; PT

ρ ðf ÞÞ;

which combined with (2.5) yields:

ρ
�
g1n � f

	
≤
�
1� β1n

	
ρðfn � f Þ þ β1nHρ

�
PT
ρ ðg2n

	
; PT

ρ ðf ÞÞ: (2.6)

In (1.8), letting g ¼ g2n and noting that PT
ρ ðf Þ ¼ ffg and wð0Þ ¼ 0, we get:

ρ
�
g1n � f

	
≤
�
1� β1n

	
ρðfn � f Þ þ δβ1nρ

�
g2n � f

	
: (2.7)

Similarly, an application of (1.8) and (1.9) gives

ρ
�
g2n � f

	
≤
�
1� β2n

	
ρðfn � f Þ þ δβ2nρ

�
g3n � f

	
: (2.8)

Also, an application of (1.8) and (1.9) gives

ρ
�
g3n � f

	
≤
�
1� β3n

	
ρðfn � f Þ þ δβ3nρ

�
g4n � f

	
: (2.9)

Substituting (2.9) in (2.8), (2.8) in (2.7) and (2.7) in (2.4), and simplifying, we obtain

ρðfnþ1 � f Þ≤ �1� ð1� δÞαn � ð1� δÞδαnβ
1
n � ð1� δÞδ2αnβ

1
nβ

2
n (2.10)

−ð1� δÞδ3αnβ
1
nβ

2
nβ

3
n


þ δ3αnβ
1
nβ

2
nβ

3
nρ
�
g4n � f

	
:

Continuing this process, an application of (1.8) and (1.9) gives

ρ
�
gk−2n � f

	
≤
�
1� βk−2n

	
ρðfn � f Þ þ δβk−2n ρ

�
gk−1n � f

	
: (2.11)
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and

ρ
�
gk−1n � f

	
≤
�
1� βk−1n

	
ρðfn � f Þ þ δβk−1n ρðfn � f Þ: (2.12)

Substituting (2.12) and (2.11) in (2.10) inductively and simplifying, we obtain

ρðfnþ1 � f Þ≤
"
1� ð1� δÞαn �

Xk−1
i¼1

ð1� δÞδiαnβ
1
nβ

2
n . . . β

i
n (2.13)

þ δkαnβ
1
nβ

2
nβ

3
nβ

4
n . . . β

k−1
n



ρðfn � f Þ

≤½1� ð1� δÞαn�ρðfn � f Þ:
From (2.13), we inductively obtain

ρðfnþ1 � f Þ≤
"Y
m¼0

n

ð1� ð1� δÞαmÞ
#
ρðf0 � f Þ: (2.14)

Using that fact that δ∈ ½0; 1Þ fαng∞n¼0 ⊂ ½0; 1Þ satisfying P∞

n¼0αn ¼ ∞, then from (2.14),
we obtain

lim
n→∞

ρðfnþ1 � f Þ≤ lim
n→∞

Y
m¼0

n

½1� ð1� δÞαm�ρðf0 � f Þ ¼ 0: (2.15)

Therefore, ffng ρ-converges to f ∈FρðTÞ: The proof is complete. ▪
Since the explicit Noor (1.10), explicit Ishikawa (1.11), explicit Mann (1.12) iterative

sequences are special cases of the explicit multistep iterative sequence (1.9) (see [22] for
details), then Theorem 2.1 leads to the following corollary:

Corollary 2.1. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ, and T : D→PρðDÞ be a multivalued mapping such that PT

ρ is a ρ−quasi-
contractive-like mapping, satisfying contractive-like condition (1.8). Suppose that
FρðTÞ≠ 0==. Let f0 ∈D and ffng⊂D be defined by the explicit Noor (1.10), the explicit
Ishikawa (1.11) and the explicit Mann (1.12) iterative sequences respectively, where the
sequences fαng∞n¼0; fβ1ng

∞

n¼0; fβ2ng
∞

n¼0 ⊂ ½0; 1Þ are such that
P∞

0 αn ¼ ∞: Then:

(1) the explicit Noor iterative sequence (1.10) converges strongly to the fixed point
of T:

(2) the explicit Ishikawa iterative sequence (1.11) converges strongly to the fixed point
of T:

(3) the explicit Mann iterative sequence (1.12) converges strongly to the fixed point ofT:

2.2 Strong convergence results for explicit multistep-SP iterative sequences in modular
function spaces

Theorem 2.2. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ, and T : D→PρðDÞ be a multivalued mapping such that PT

ρ is a ρ−quasi-
contractive-like mapping, satisfying contractive-like condition (1.8). Suppose that
FρðTÞ≠ 0==. Let f0 ∈D and ffng⊂D be defined by the explicit multistep-SP iterative
sequence (1.13), where the sequences fαng∞n¼0; fβing

∞

n¼0 ⊂ ½0; 1Þ, ði ¼ 1; 2; . . . ; k− 1Þ are
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such that
P∞

0 αn ¼ ∞:Then the explicit multistep-SP iterative sequence (1.13) ρ-converges to
a fixed point of T:

Proof. Let f ∈FρðTÞ. From Lemma 1.1, we have that PT
ρ ðf Þ ¼ ffg and FρðTÞ ¼ FðPT

ρ ðf ÞÞ.
Using the explicit multistep-SP iterative sequence (1.13) and the convexity of ρ, we obtain the
following estimate:

ρðfnþ1 � f Þ ¼ ρ½ð1� αnÞg1n þ αnv
1
n � f



(2.16)

¼ ρ
�ð1� αnÞ

�
g1n � f

	þ αn

�
v1n � f

	

≤ð1� αnÞρ

�
g1n � f

	þ αnρ
�
v1n � f

	
:

Since v1n ∈PT
ρ ðg1nÞ and PT

ρ ðf Þ ¼ ffg, we have
ρ
�
v1n � f

	 ¼ distρ
�
v1n; P

T
ρ ðf Þ

	
≤Hρ

�
PT
ρ ðg1n

	
; PT

ρ ðf ÞÞ;

which combined with (2.16) yields:

ρðfnþ1 � f Þ≤ ð1� αnÞρ
�
g1n � f

	þ αnHρ

�
PT
ρ ðg1n

	
; PT

ρ ðf ÞÞ: (2.17)

In (1.8), letting g ¼ g1n and noting that PT
ρ ðf Þ ¼ ffg and wð0Þ ¼ 0, we get

Hρ

�
PT
ρ ðg1n

	
;PT

ρ ðf ÞÞ≤ δρ
�
g1n � f

	þ wð0Þ ¼ δρ
�
g1n � f

	
: (2.18)

Substituting (2.18) in (2.17), we obtain

ρðfnþ1 � f Þ≤ ð1� αnÞρ
�
g1n � f

	þ δαnρ
�
g1n � f

	
(2.19)

¼ ½1� ð1� δÞαn�ρ
�
g1n � f

	
:

Next, from (1.13) and the convexity of ρ,

ρ
�
g1n � f

	 ¼ ρ
��
1� β1n

	
g2n þ β1nv

2
n � f



(2.20)

¼ ρ
��
1� β1n

	�
g2n � f

	þ β1n
�
v2n � f

	

≤
�
1� β1n

	
ρ
�
g2n � f

	þ β1nρ
�
v2n � f

	
:

Since v2n ∈PT
ρ ðg2nÞ and PT

ρ ðf Þ ¼ ffg, we have
ρ
�
v2n � f

	 ¼ distρ
�
v2n; P

T
ρ ðf Þ

	
≤Hρ

�
PT
ρ ðg2n

	
; PT

ρ ðf ÞÞ;

which combined with (2.20) yields:

ρ
�
g1n � f

	
≤
�
1� β1n

	
ρ
�
g2n � f

	þ β1nHρ

�
PT
ρ ðg2n

	
; PT

ρ ðf ÞÞ: (2.21)

Using (1.8) with g ¼ g2n in (2.21) and noting that wð0Þ ¼ 0 and PT
ρ ðf Þ ¼ ffg, then we get the

following:

ρ
�
g1n � f

	
≤
�
1� β1n

	
ρ
�
g2n � f

	þ δβ1nρ
�
g2n � f

	
(2.22)

¼ �1� ð1� δÞβ1n


ρ
�
g2n � f

	
:

Similarly, an application of (1.8) and (1.13) gives

ρ
�
g2n � f

	
≤
�
1� β2n

	
ρ
�
g3n � f

	þ δβ2nρ
�
g3n � f

	
(2.23)
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¼ �1� ð1� δÞβ2n


ρ
�
g3n � f

	
:

Also, an application of (1.8) and (1.13) gives

ρ
�
g3n � f

	
≤
�
1� β3n

	
ρ
�
g4n � f

	þ δβ3nρ
�
g4n � f

	
(2.24)

¼ �1� ð1� δÞβ3n


ρ
�
g4n � f

	
:

Continuing this process, an application of (1.8) and (1.13) gives

ρ
�
gk−2n � f

	
≤
�
1� βk−2n

	
ρ
�
gk−1n � f

	þ δβk−2n ρ
�
gk−1n � f

	
(2.25)

¼ �1� ð1� δÞβk−2n



ρ
�
gk−1n � f

	
:

and ρ
�
gk−1n � f

	
≤
�
1� βk−1n

	
ρðfn � f Þ þ δβk−1n ρðfn � f Þ (2.26)

¼ �1� ð1� δÞβk−1n



ρðfn � f Þ:

Substituting (2.22)–(2.26) in (2.19) inductively and simplifying, we obtain

ρðfnþ1 � f Þ≤
 
½1� ð1� δÞαn�

Y
i¼1

k 1 �
1� ð1� δÞβin


!
ρðfn � f Þ (2.27)

≤½1� ð1� δÞαn�ρðfn � f Þ:
From (2.27), we inductively obtain

ρðfnþ1 � f Þ≤
Y
m¼0

n

½1� ð1� δÞαm�ρðf0 � f Þ: (2.28)

Using that fact that δ∈ ½0; 1Þ fαng∞n¼0 ⊂ ½0; 1Þ satisfyingP∞

n¼0αn ¼ ∞, then from (2.28), we
obtain

lim
n→∞

ρðfnþ1 � f Þ≤ lim
n→∞

Y
m¼0

n

½1� ð1� δÞαm�ρðf0 � f Þ ¼ 0: (2.29)

Therefore, limn→∞ρðfn − f Þ ¼ 0, where f ∈FρðTÞ: The proof is complete. ▪
Theorem 2.2 leads to the following corollary:

Corollary 2.2. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ, and T : D→PρðDÞ be a multivalued mapping such that PT

ρ is a ρ−quasi-
contractive-like mapping, satisfying contractive-like condition (1.8). Suppose that FρðTÞ≠∅.
Let f0 ∈D and ffng⊂D be defined by the explicit SP iterative sequence (1.14), with the
sequences fαng∞n¼0; fβ1ng

∞

n¼0; fβ2ng
∞

n¼0 ⊂ ½0; 1Þ such that
P∞

0 αn ¼ ∞: Then, the explicit SP
iterative sequence (1.14) ρ-converges strongly to a fixed point of T:

2.3 Strong convergence results for implicit multistep iterative sequences inmodular function
spaces

Theorem 2.3. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ. Let T : D→PρðDÞ be a multivalued mapping satisfying property (I)
and such that PT

ρ is a ρ−quasi-contractive-like mapping, satisfying contractive-
like condition (1.8). Suppose that FρðTÞ≠ 0==. Let f0 ∈D and ffng⊂D be defined by the
implicit multistep iterative sequence (1.15), where the sequences fαng∞n¼0; fβing

∞

n¼0 ⊂ ½0; 1Þ
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ði ¼ 1; 2; . . . ; k− 1Þ are such that
P∞

0 αn ¼ ∞: Then, the implicit multistep iterative
sequence (1.15) ρ-converges strongly to a fixed point of T:

Proof. Let f ∈FρðTÞ. From Lemma 1.1, we have that PT
ρ ðf Þ ¼ ffg and FρðTÞ ¼ FðPT

ρ ðf ÞÞ.
Using implicit multistep iterative sequence (1.15) and the convexity of ρ, we obtain the

following estimate:

ρðfnþ1 � f Þ ¼ ρ½ð1� αnÞf 1n þ αnunþ1 � f



(2.30)

¼ ρ
�ð1� αnÞ

�
f 1n � f

	þ αnðunþ1 � f Þ

≤ð1� αnÞρ

�
f 1n � f

	þ αnρðunþ1 � f Þ

Since unþ1 ∈PT
ρ ðfnþ1Þ and PT

ρ ðf Þ ¼ ffg,
ρðunþ1 � f Þ≤ distρ

�
unþ1; P

T
ρ ðf Þ

	
≤Hρ

�
PT
ρ ðfnþ1Þ; PT

ρ ðf ÞÞ;

which combined with (2.30) gives

ρðfnþ1 � f Þ≤ ð1� αnÞρ
�
f 1n � f

	þ αnHρ

�
PT
ρ ðfnþ1Þ; PT

ρ ðf ÞÞ: (2.31)

In (1.8), by letting g ¼ fnþ1 and noting that wð0Þ ¼ 0 and PT
ρ ðf Þ ¼ ffg, we get:

Hρ

�
PT
ρ ðfnþ1Þ; PT

ρ ðf ÞÞ≤ δρðfnþ1 � f Þ þ wρð0Þ ¼ δρðfnþ1 � f Þ: (2.32)

Substituting (2.32) in (2.31), we obtain

ρðfnþ1 � f Þ≤ ð1� αnÞρ
�
f 1n � f

	þ δαnρðfnþ1 � f Þ

That is,
ρðfnþ1 � f Þ≤

�
1� αn

1� δαn



ρ
�
f 1n � f

	
: (2.33)

Next, from (1.15) and the convexity of ρ, we have

ρ
�
f 1n � f

	 ¼ ρ
��
1� β1n f

2
n þ β1n

	
u1n � f



(2.34)

¼ ρ
��
1� β1n

	�
f 2n � f

	þ β1n
�
u1n � f

	

¼ �1� β1n

	
ρ
�
f 2n � f

	þ β1nρ
�
u1n � f

	
:

Since u1n ∈PT
ρ ðf 1n Þ and PT

ρ ðf Þ ¼ ffg,
ρ
�
u1n; f

	 ¼ distρ
�
u1n; P

T
ρ ðf Þ

	
≤Hρ

�
PT
ρ ðf 1n

	
; PT

ρ ðf ÞÞ;

which combined with (2.34) gives:

ρ
�
f 1n � f

	
≤
�
1� β1n

	
ρ
�
f 2n � f

	þ β1nHρ

�
PT
ρ ðf 1n

	
; PT

ρ ðf ÞÞ: (2.35)

By letting g ¼ f 1n in (1.8) and noting that wð0Þ ¼ 0 and PT
ρ ðf Þ ¼ ffg, we get:

Hρ

�
PT
ρ ðf 1n

	
; PT

ρ ðf ÞÞ≤ δρ
�
f 1n � f

	þ wρð0Þ ¼ δρ
�
f 1n � f

	
(2.36)

Substituting (2.36) in (2.35), we obtain

ρ
�
f 1n � f

	
≤
�
1� β1n

	
ρ
�
f 2n � f

	þ δβ1nρ
�
f 1n � f
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That is,

ρ
�
f 1n � f

	
≤

�
1� β1n
1� δβ1n



ρ
�
f 2n � f

	
: (2.37)

Similarly, an application of (1.8) and (1.15) gives

ρ
�
f 2n � f

	
≤

�
1� β2n
1� δβ2n



ρ
�
f 3n � f

	
: (2.38)

ρ
�
f 3n � f

	
≤

�
1� β3n
1� δβ3n



ρ
�
f 4n � f

	
: (2.39)

..

.

ρ
�
f k−2n � f

�
≤

�
1� βk−2n

1� δβk−2n



ρ
�
f k−1n � f

�
: (2.40)

ρ
�
f k−1n � f

�
≤

�
1� βk−1n

1� δβk−1n



ρðfn � f Þ: (2.41)

Substituting (2.37)–(2.40) in (2.33) inductively and simplifying, we obtain

ρðfnþ1 � f Þ≤
�
1� αn

1� δαn


�Y
i¼1

k 1 1� βin
1� δβin



ρðfn � f Þ: (2.42)

Observe that

1� αn

1� δαn

≤ 1� αn þ δαn;

�
1� βin
1� δβin



≤ 1� βin þ δβin; i ¼ 1; . . . ; k� 1 (2.43)

Substituting (2.43) in (2.42) and simplifying, we obtain

ρðfnþ1 � f Þ≤ ½1� ð1� δÞαn�ρðfn � f Þ: (2.44)

From (2.44), we inductively obtain

ρðfnþ1 � f Þ≤
Y
m¼0

n

½1� ð1� δÞαm�ρðf0 � f Þ: (2.45)

Using that fact that δ∈ ½0; 1Þ fαng∞n¼0 ⊂ ½0; 1Þ satisfyingP∞

n¼0αn ¼ ∞, then from (2.45), we
obtain

lim
n→∞

ρðfnþ1 � f Þ≤ lim
n→∞

Y
m¼0

n

½1� ð1� δÞαm�ρðf0 � f Þ ¼ 0: (2.46)

Therefore, limn→∞ρðfn − f Þ ¼ 0, with f ∈FρðTÞ: The proof is complete. ▪
Theorem 2.3 leads to the following corollary:

Corollary 2.3. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ. Let T : D→PρðDÞbe a multivalued mapping satisfying property (I), such
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that PT
ρ is a ρ−quasi-contractive-like mapping, satisfying contractive-like condition (1.8).

Suppose that FρðTÞ≠∅. Let f0 ∈D and ffng⊂D be defined by the implicit Noor (1.16),
implicit Ishikawa (1.17) and implicit Mann (1.18) iterative sequences respectively,

where the sequences fαng∞n¼0, fβ1ng
∞

n¼0, fβ2ng
∞

n¼0 ⊂ ½0; 1Þ are such that
P∞

0 αn ¼ ∞: Then:

(1) the implicit Noor iterative sequence (1.16) converges strongly to the fixed point of T:

(2) the implicit Ishikawa iterative sequence (1.17) converges strongly to the fixed point
of T:

(3) the implicit Mann iterative sequence (1.18) converges strongly to the fixed point ofT:

3. Stability results for strong ρ-quasi-contractive-like maps
In this section, conditions for some stability types of the explicit and implicit multistep
iterative sequences are stated and backed by proofs in the framework of modular function
spaces.

The first important result on T − stable single mappings was proved by Ostrowski [18]
for Picard iteration. Berinde [13], presented useful explanation on how to obtain the stability
of various iterative sequences. Okeke and Khan [7] gave a similar version of stability results
for multivalued mapping in modular function spaces.

In this paper, we introduce two other versions of ρ-stability and attempt to relate them
with the concept of ρ-stability in literature.

Definition 3.1. Let D be a nonempty ρ−closed, ρ−bounded and convex subset of a
ρ−complete modular space Lρ, and T : D→PρðDÞ be a multivalued mapping with
FρðTÞ≠∅. Suppose that a fixed-point iterative sequence defined by

fnþ1 ¼ FðT; fnÞ (3.1)

with initial guess f0 ∈D and F is a given function, converges to a fixed point f of T: Let
fhng∞n¼0 be an arbitrary sequence in D. The fixed-point iterative sequence is said to be:

(1) ρ-stable with respect to T if and only if

lim
n→∞

εn ¼ 00 lim
n→∞

hn ¼ f ; where εn ¼ ρðhnþ1 � FðT; hnÞÞ: (3.2)

(2) relatively ρ-stable with respect to T if and only if

lim
n→∞

δn ¼ 00 lim
n→∞

hn ¼ f ; where δn ¼ ρðhnþ1 � f Þ � ρðFðT; hnÞ � f Þ: (3.3)

(3) weakly ρ-stable with respect to T if and only if

sup
λ∈ð0;1�

λρ
�
hnþ1 � FðT; hnÞ

λ

�
→ 00 inf

λ∈½1;∞Þ
λρ
�
hn � f

λ

�
→ 0: (3.4)

The term “relatively” in (2) is employed because the premise of the convergence of fhng to f is
hinged to the fact that ρðhnþ1 − f Þand ρðFðT; hnÞ− f Þget closer to each other as n increases.
It is not known if this concept is directly related to ρ-stability as defined in [7]. If ρ satisfies the
triangular inequality (an unwanted condition in this paper), the relation between relatively
ρ-stability and ρ-stability is as follows: (1) a relative ρ-stable fixed-point iteration is ρ-stable if

AJMS
27,2

202



δn > 0 for n sufficiently big since jδnj≤ εn; (2) a ρ-stable fixed-point iteration is relatively
ρ-stable if for n sufficiently big, δn < 0 and jδnj≤ εn.

However, a ρ-stable fixed-point iteration is weakly ρ-stable, hence the term “weakly.”
In this sequel, we also introduce the following concepts of strong quasi-contractions

particular to modular function spaces and compatible in some sense to the newly introduced
stability notions.

Definition 3.2. LetHρð$; $Þbe the ρ-Hausdorff distance on the family CρðLρÞ of nonempty
ρ-closed ρ-bounded subsets of Lρ, that is,

HρðA; BÞ ¼ max
�
sup
f∈A

distρðf ; BÞ ; sup
g∈B

distρðg; AÞ
�
; A; B∈CρðLρÞ:

A multivalued map T : D→CρðLρÞ is said to be an:

(1) m-strong ρ−contraction mapping, where m∈ℕ, if there exists a constant δ∈ ½0; 1Þ
such that

HρðTf ; TgÞ≤mδρ
�
f � g

m

�
; ∀f ; g ∈D; (3.5)

(If δ ¼ 1 in (3.5), T is said to be an m-strong ρ-nonexpansive mapping)

(2) m-strong ρ−quasi-contractive mapping, where m∈ℕ, if

HρðTf ; TgÞ≤mδρ
�
f � g

m

�
þ Lρðh� f Þ; ∀f ; g ∈D ∀h∈Tf ; L≥ 0; (3.6)

(If δ ¼ 1 in (3.6), T is said to be an m-strong ρ-quasi-contractive mapping)

(3) m-strong ρ−quasi-contractive-like mapping, where m∈ℕ, if

HρðTf ; TgÞ≤mδρ
�
f � g

m

�
þ wðρðh� f ÞÞ; ∀f ; g ∈D ∀h∈Tf : (3.7)

wherew : ℝþ →ℝþ is amonotone increasing functionwithwð0Þ ¼ 0: (If δ ¼ 1 in (3.7),T is
said to be a m-strong ρ-quasi-contractive-like mapping).
Given any m∈ℕ, an m-strong ρ-contraction (resp. ρ-quasi-contractive mapping,

or a ρ-quasi-contractive-like mapping) is a ρ-contraction (resp. ρ-quasi-contractive
mapping, or a ρ-quasi-contractive-like mapping), thus, the convergence results in the
previous section hold for m-strong ρ-quasi-contractive-like mappings. The converse is
trivial when m ¼ 1.

3.1 Stability results for explicit multistep iterative sequences in modular function spaces

Theorem 3.1. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ, andT : D→PρðDÞbe a multivalued mapping such that PT

ρ is anm-strong

ρ-quasi-contractive-like mapping, satisfying contractive-like condition (3.7), where m∈ℕ.
Suppose that FρðTÞ≠∅. Let f0 ∈D and ffng⊂D be defined by the explicit multistep

iterative sequence (1.9), where the sequences fαng∞n¼0; fβing
∞

n¼0 ⊂ ½0; 1Þ ði ¼ 1; 2; . . . ; k− 1Þ
are such that fαng∞n¼0 is bounded away from 0. Then, (1.9) is:

(1) relatively ρ-stable with respect to T if m ¼ 1;

(2) weakly ρ-stable with respect to T if m > 1.

Multistep-type
construction of

fixed point...

203



(3) ρ-stable with respect toT ifm > 1 and ∀g ∈D ρðg − f Þ ¼ mρ
�
g − f
m

�
where f ∈FρðTÞ

(in this case, PT
ρ is a ρ-quasi-contractive-like map).

Proof. Let fαng∞n¼0; fβing
∞

n¼0 ⊂ ½0; 1Þ ði ¼ 1; 2; . . . ; k− 1Þbe sequences such that fαng∞n¼0 is
bounded away from 0.

Let fhng∞n¼0 be an arbitrary sequence in D and set:

εn ¼ ρ
�
hnþ1 � ð1� αnÞhn � αnz

1
nÞ

δn ¼ ρðhnþ1 � f Þ � ρ
��
1� αnÞhn þ αnz

1
n � f Þ

γn ¼ sup
λ∈ð0;1�

λρ
�
hnþ1 � ð1� αnÞhn � αnz

1
n

λ

�

sin ¼
�
1� βin

	
hn þ βinz

iþ1
n ; i ¼ 1; 2; . . . ; k� 2

sk−1n ¼ �1� βk−1n

	
hn þ βk−1n wn; n ¼ 0; 1; 2; . . .

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(3.8)

where wn ∈PT
ρ ðhnÞ and zin ∈PT

ρ ðsinÞ; i ¼ 1; 2; . . . ; k− 1.
Let:

rn;m ¼ ð1� αnÞρ
�
hn � f

m

�
þ αn

m
ρ
�
z1n � f

	
: (3.9)

By the convexity of ρ, we have:

ρðhnþ1 � f Þ ¼ δn þ ρ
��
1� αnÞhn þ αnz

1
n � f Þ

¼ δn þ ρ
��
1� αnÞðhn � f Þ þ αn

�
z1n � f

	Þ
≤ δn þ rn;1:

(3.10)

If m > 1, we have:

ρ
�
hnþ1 � f

m

�
¼ ρ
�
αn

m

hnþ1 � ð1� αnÞhn � αnz
1
n

αn

þ ð1� αnÞhn � f

m
þ αn

m

�
z1n � f

	�

≤
αn

m
ρ
�
hnþ1 � ð1� αnÞhn � αnz

1
n

αn

�
þ rn;m

≤
γn
m

þ rn;m:

(3.11)

and if in addition ∀g∈D ρðg− f Þ ¼mρ
�
g− f
m

�
;

ρ
�
hnþ1 � f

m

�
¼ ρ
�
hnþ1 � ð1� αnÞhn � αnz

1
n

m
þ 1� αn

m
ðhn � f Þ þ αn

m

�
z1n � f

	�

≤
1

m
εn þ rn;m:

(3.12)
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Since z1n ∈PT
ρ ðs1nÞ, then ρðz1n − f Þ ¼ distρðz1n; PT

ρ ðf ÞÞ≤HρðPT
ρ ðs1nÞ; PT

ρ ðf ÞÞ hence:

rn;m ≤ ð1� αnÞρ
�
hn � f

m

�
þ αn

m
Hρ

�
PT
ρ ðs1n

	
; PT

ρ ðf ÞÞ: (3.13)

Using (3.7) and (3.8), and noting that wð0Þ ¼ 0, we get the following:

rn;m ≤ ð1� αnÞρ
�
hn � f

m

�
þ δαnρ

�
s1n � f

m

�
(3.14)

Using the convexity of ρ in (3.8), and the fact that z2n ∈PT
ρ ðs2nÞ, we have

ρ
�
s1n � f

m

�
≤
�
1� β1n

	
ρ
�
hn � f

m

�
þ β1nρ

�
z2n � f

m

�
(3.15)

≤
�
1� β1n

	
ρ
�
hn � f

m

�
þ β1n

m
distρ

�
z2n; P

T
ρ ðf Þ

	

≤
�
1� β1n

	
ρ
�
hn � f

m

�
þ β1n

m
Hρ

�
PT
ρ ðs2n

	
; PT

ρ ðf ÞÞ:

Using (3.7) and noting that wð0Þ ¼ 0, then we get the following:

ρ
�
s1n � f

m

�
≤
�
1� β1n

	
ρ
�
hn � f

m

�
þ δβ1nρ

�
s2n � f

m

�
: (3.16)

Substituting (3.16) in (3.15), then in (3.14), we obtain

rn;m ≤ ð1� αnÞρ
�
hn � f

m

�
þ δαnρ

�
s1n � f

m

�
(3.17)

≤ð1� αnÞρ
�
hn � f

m

�
þ δαn

�
1� β1n

	
ρ
�
hn � f

m

�
þ δ2αnβ

1
nρ
�
s2n � f

m

�

≤½1� ð1� δÞαn � αnβ
1
nδ�ρ

�
hn � f

m

�
þ δ2αnβ

1
nρ
�
s2n � f

m

�
:

Similarly, successive applications of (1.8) and (3.3) give:

ρ
�
s2n � f

m

�
≤
�
1� β2n

	
ρ
�
hn � f

m

�
þ δβ2nρ

�
s3n � f

m

�

ρ
�
s3n � f

m

�
≤
�
1� β3n

	
ρ
�
hn � f

m

�
þ δβ3nρ

�
s4n � f

m

�

ρ
�
sk−2n � f

m

�
≤
�
1� βk−2n

	
ρ
�
hn � f

m

�
þ δβk−2n ρ

�
sk−1n � f

m

�

ρ
�
sk−1n � f

m

�
≤
�
1� βk−1n

	
ρ
�
hn � f

m

�
þ δβk−1n ρ

�
hn � f

m

�

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(3.18)
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Substituting (3.18) in (3.17), and simplifying, we obtain

rn;m ≤ ½1� ð1� δÞαn�ρ
�
hn � f

m

�
: (3.19)

Hence we have the equations:

ρðhnþ1 � f Þ≤ δn þ ½1� ð1� δÞαn�ρðhn � f Þ (3.20)

and if m > 1,

ρ
�
hnþ1 � f

m

�
≤
γn
m

þ ½1� ð1� δÞαn�ρ
�
hn � f

m

�
: (3.21)

and if in addition ∀g ∈D ρðg − f Þ ¼ mρ
�
g − f
m

�
,

ρðhnþ1 � f Þ≤ 1

m
εn þ ½1� ð1� δÞαn�ρðhn � f Þ: (3.22)

(1) If m ¼ 1, then from (3.20) and Lemma 1.2, limn→∞δn ¼ 00hn → f . Thus, the fixed-
point iteration (1.9) is relatively ρ-stable.

(2) Suppose now that m > 1 and that limn→∞γn ¼ 0.

Then by (3.21) and Lemma 1.2, ρ
�
hn − f
m

�
→ 0andmρ

�
hn − f
m

�
→ 0. Thus, the fixed-point

iteration (1.9) is weakly ρ-stable.

(3) Suppose thatm > 1 and that ∀g ∈D ρðg − f Þ ¼ mρ
�
g − f
m

�
: If limn→∞εn ¼ 0, then by

(3.22) and Lemma 1.2, hn → f . Thus, the fixed-point iteration (1.9) is ρ-stable. ∎

Theorem 3.1 leads to the following corollary:

Corollary 3.1. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ, andT : D→PρðDÞbe a multivalued mapping such that PT

ρ is anm-strong

ρ-quasi-contractive-like mapping, satisfying contractive-like condition (3.7), where m∈ℕ.
Suppose that FρðTÞ≠ 0==. Let f0 ∈D and ffng⊂D be the explicit Noor (1.10), the explicit
Ishikawa (1.11) or the explicit Mann (1.12) iterative sequence, where the sequences

fαng∞n¼0; fβ1ng
∞

n¼0; fβ2ng
∞

n¼0 ⊂ ½0; 1Þ are such that fαng∞n¼0 is bounded away from 0. Then
ffng is

(1) relatively ρ-stable with respect to T if m ¼ 1;

(2) weakly ρ-stable with respect to T if m > 1.

(3) ρ-stable with respect toT ifm > 1 and ∀g ∈D ρðg − f Þ ¼ mρ
�
g − f
m

�
where f ∈FρðTÞ

(in this case, PT
ρ is a ρ-quasi-contractive-like map).

3.2 Stability results for explicit multistep-SP iterative sequences in modular function spaces

Theorem 3.2. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ, andT : D→PρðDÞbe a multivalued mapping such that PT

ρ is anm-strong
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ρ-quasi-contractive-like mapping, satisfying contractive-like condition (3.7), where m∈ℕ.
Suppose that FρðTÞ≠∅. Let f0 ∈D and ffng⊂D be defined by the explicit multistep

iterative sequence (1.13), where the sequences fαng∞n¼0; fβing
∞

n¼0 ⊂ ½0; 1Þ ði ¼ 1; 2; . . . ; k− 1Þ
are such that fαng∞n¼0 is bounded away from 0. Then, (1.13) is:

(1) relatively ρ-stable with respect to T if m ¼ 1;

(2) weakly ρ-stable with respect to T if m > 1.

(3) ρ-stable with respect toT ifm > 1and ∀g∈D ρðg − f Þ ¼ mρ
�
g − f
m

�
where f ∈FρðTÞ

(in this case, PT
ρ is a ρ-quasi-contractive-like map).

Proof. The method of proof is similar to that of Theorem 3.1. ▪
Theorem 3.2 leads to the following corollary:

Corollary 3.2. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ, andT : D→PρðDÞbe a multivalued mapping such that PT

ρ is anm-strong

ρ-quasi-contractive-like mapping, satisfying contractive-like condition (3.7), where m∈ℕ.
Suppose that FρðTÞ≠∅. Let f0 ∈D and ffng⊂D be defined by the explicit SP iterative

sequence (1.14), with the sequences fαng∞n¼0, fβ1ng
∞

n¼0, fβ2ng
∞

n¼0 ⊂ ½0; 1Þ such that fαng∞n¼0 is
bounded away from 0. Then (1.14) is:

(1) relatively ρ-stable with respect to T if m ¼ 1;

(2) weakly ρ-stable with respect to T if m > 1;

(3) ρ-stable with respect toT ifm > 1 and ∀g ∈D ρðg − f Þ ¼ mρ
�
g − f
m

�
where f ∈FρðTÞ

(in this case, PT
ρ is a ρ-quasi-contractive-like map).

3.3 Stability results for implicit multistep iterative sequences in modular function spaces

Theorem 3.3. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ. Let T : D→PρðDÞ be a multivalued mapping satisfying property (I),

such that PT
ρ is an m-strong ρ-quasi-contractive-like mapping, satisfying contractive-

like condition (3.7), where m∈ℕ. Suppose that FρðTÞ≠ 0==. Let f0 ∈D and ffng⊂D be
defined by the implicit multistep iterative sequence (1.15), where the sequences

fαng∞n¼0; fβing
∞

n¼0 ⊂ ½0; 1Þ ði ¼ 1; 2; . . . ; k− 1Þ are such that fαng∞n¼0 is bounded away
from 0. Then, (1.15) is:

(1) relatively ρ-stable with respect to T if m ¼ 1;

(2) weakly ρ-stable with respect to T if m > 1.

(3) ρ-stable with respect toT ifm > 1 and ∀g ∈D ρðg − f Þ ¼ mρ
�
g − f
m

�
where f ∈FρðTÞ

(in this case, PT
ρ is a ρ-quasi-contractive-like map).

Proof.

Let fαng∞n¼0; fβing
∞

n¼0 ⊂ ½0; 1Þ be sequences such that fαng∞n¼0 is bounded away from 0.
Suppose f ∈FρðTÞ. Let fhng∞n¼0 is an arbitrary sequence and set:
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εn ¼ ρ
�
hnþ1 � ð1� αnÞh1n � αnznþ1Þ;

δn ¼ ρðhnþ1 � f Þ � ρ
��
1� αnÞh1n þ αnznþ1 � f Þ;

γn ¼ sup
λ∈ð0;1�

λρ

 
hnþ1 � ð1� αnÞh1n � αnznþ1

λ

!

hin ¼
�
1� βin

	
hiþ1
n þ βinz

i
n; i ¼ 1; 2; . . . ; k� 2

hk−1n ¼ �1� βk−1n

	
hn þ βk−1n zk−1n ; n ¼ 0; 1; 2; . . . ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(3.23)

where znþ1 ∈PT
ρ ðhnþ1Þ; zin ∈PT

ρ ðhinÞ; i ¼ 1; 2; . . . ; k− 1:

Let:

rn;m ¼ ð1� αnÞρ
 
h1n � f

m

!
þ αn

m
ρðznþ1 � f Þ: (3.24)

By the convexity of ρ, we have:

ρðhnþ1 � f Þ ¼ δn þ ρ
��
1� αnÞh1n þ αnznþ1 � f Þ

¼ δn þ ρ
��
1� αnÞ

�
h1n � f

	þ αnðznþ1 � f ÞÞ
≤ δn þ rn;1:

(3.25)

If m > 1, we have:

ρ
�
hnþ1� f

m

�
¼ ρ

 
αn

m

hnþ1�ð1�αnÞh1n�αnznþ1

αn

þð1�αnÞh
1
n� f

m
þαn

m
ðznþ1� f Þ

!

≤
αn

m
ρ

 
hnþ1�ð1�αnÞh1n�αnznþ1

αn

!
þ rn;m

≤
γn
m
þ rn;m:

(3.26)

and if in addition ∀g∈D ρðg− f Þ¼mρ
�
g− f
m

�
;

ρ
�
hnþ1� f

m

�
¼ ρ

 
hnþ1�ð1�αnÞh1n�αnznþ1

m
þ1�αn

m

�
h1n� f

	þαn

m
ðznþ1� f Þ

!

≤
1

m
εnþ rn;m:

(3.27)
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Since znþ1 ∈PT
ρ ðhnþ1Þ, from (3.24) and (3.7) we have that:

rn;m ¼ ð1� αnÞρ
 
h1n � f

m

!
þ αn

m
ρðznþ1 � f Þ

¼ ð1� αnÞρ
 
h1n � f

m

!
þ αn

m
distρ

�
znþ1; P

T
ρ ðf Þ

	

≤ ð1� αnÞρ
 
h1n � f

m

!
þ αn

m
Hρ

�
PT
ρ ðhnþ1Þ; PT

ρ ðf ÞÞ

≤ ð1� αnÞρ
 
h1n � f

m

!
þ δαnρ

�
hnþ1 � f

m

�
:

(3.28)

Using the convexity of ρ in (3.23), and the fact that z1n ∈PT
ρ ðh1nÞ, we have

ρ

 
h1n � f

m

!
≤
�
1� β1n

	
ρ

 
h2n � f

m

!
þ β1nρ

�
z1n � f

m

�

≤
�
1� β1n

	
ρ

 
h2n � f

m

!
þ β1n

m
distρ

�
z1n; P

T
ρ ðf Þ

	

≤
�
1� β1n

	
ρ

 
h2n � f

m

!
þ β1n

m
Hρ

�
PT
ρ ðh1n

	
; PT

ρ ðf ÞÞ

≤
�
1� β1n

	
ρ

 
h2n � f

m

!
þ δβ1nρ

 
h1n � f

m

!
:

Thus:

ρ

 
h1n � f

m

!
≤

�
1� β1n
1� δβ1n



ρ

 
h2n � f

m

!
: (3.29)

Similarly, we have the following:

ρ

 
h2n � f

m

!
≤

�
1� β2n
1� δβ2n



ρ

 
h3n � f

m

!
(3.30)

..

.

ρ

 
hk−2n � f

m

!
≤

�
1� βk−2n

1� δβk−2n



ρ

 
hk−1n � f

m

!
(3.31)
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ρ

 
hk−1n � f

m

!
≤

�
1� βk−1n

1� δβk−1n



ρ
�
hn � f

m

�
(3.32)

Substituting (3.29) – (3.32), and simplifying, we obtain

rn;m ≤ ð1� αnÞ
"Ym

i¼1

1� βi−1n

1� δβi−1n

#
ρ
�
hn � f

m

�
þ δαnρ

�
hnþ1 � f

m

�

≤ ð1� αnÞρ
�
hn � f

m

�
þ δαnρ

�
hnþ1 � f

m

�
:

(3.33)

Hence, substituting (3.33) in (3.25)–(3.27), we have the equations:

ρðhnþ1 � f Þ≤ δn þ
�
1� αn

1� δαn

�
ρðhn � f Þ (3.34)

and if m > 1,
ρ
�
hnþ1 � f

m

�
≤
γn
m

þ
�
1� αn

1� δαn

�
ρ
�
hn � f

m

�
: (3.35)

and if in addition ∀g ∈D ρðg − f Þ ¼ mρ
�
g − f
m

�
,

ρ
�
hnþ1 � f

m

�
≤
εn
m

þ
�
1� αn

1� δαn

�
ρ
�
hn � f

m

�
: (3.36)

(1) If m ¼ 1, then from (3.34) and Lemma 1.2, limn→∞δn ¼ 00hn → f . Thus the fixed-
point iteration (1.15) is relatively ρ-stable.

(2) Suppose now that m > 1 and that limn→∞γn ¼ 0.

Then by (3.35) and Lemma 1.2, ρ
�
hn − f
m

�
→ 0. Thus mρ

�
hn − f
m

�
→ 0. Thus, the fixed-

point iteration (1.15) is weakly ρ-stable.

(3) Suppose thatm > 1 and that ∀g ∈D ρðg − f Þ ¼ mρ
�
g − f
m

�
: If limn→∞εn ¼ 0, then by

(3.36) and Lemma 1.2, hn → f . Thus, the fixed-point iteration (1.15) is ρ-stable. ▪

Theorem 3.3 leads to the following corollary:

Corollary 3.3. Let D be a ρ−closed, ρ−bounded and convex subset of a ρ−complete
modular space Lρ. Let T : D→PρðDÞbe a multivalued mapping satisfying property (I), such
thatPT

ρ is anm-strong ρ-quasi-contractive-likemapping, satisfying contractive-like condition
(3.7), wherem∈ℕ. Suppose that FρðTÞ≠∅. Let f0 ∈D and ffng⊂Dbe defined by the implicit
Noor (1.16), implicit Ishikawa (1.17), implicit Mann (1.18) iterative sequence respectively,
where the sequences fαng∞n¼0; fβ1ng

∞

n¼0; fβ2ng
∞

n¼0 ⊂ ½0; 1Þ are such that fαng∞n¼0 is bounded
away from 0. Then, (1.16)–(1.18) are:

(1) relatively ρ-stable with respect to T if m ¼ 1;

(2) weakly ρ-stable with respect to T if m > 1.

(3) ρ-stable with respect toT ifm > 1and ∀g ∈D ρðg− f Þ ¼ mρ
�
g − f
m

�
where f ∈FρðTÞ

(in this case, PT
ρ is a ρ-quasi-contractive-like map).
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3.3.1 Numerical example. Let M ½0; 1� be the collection of all real-valued measurable

functions on ½0; 1� and ρ : M ½0; 1�→ℝ a convex function modular defined by ρðf Þ ¼ R 1

0jf j
∀f ∈M ½0; 1�. LetD ¼ ff ∈Lρ : 0≤ f ðxÞ≤ 2 ∀x∈ ½0; 1�gbe a subset of the modular function
space Lρ ¼ M ½0; 1� defined by ρ. D is nonempty, closed and convex.

Define map T : D→PρðDÞ by Tf ¼ fδf g, where δ ¼ 0:9. T satisfies property (I), has a

unique fixed point f ¼ 0 (since 0∈Tð0Þ), andPT
ρ is aρ-contraction,withPT

ρ ðf Þ ¼ fTfg ∀f ∈D.

In fact, PT
ρ is an m-strong ρ-strong contraction for all m∈ℕ, since ρðgÞ ¼ mρ

�
g
m

�
.

We present the results of convergence to f ¼ 0 of a multistep iterative sequence (1.9), an
explicit multistep-SP iterative sequence (1.13) and an implicit multistep iterative sequence (1.15)
using MATLAB. The parameters used are the following: f0ðxÞ ¼ 0:5xþ 0:95 ∀x∈ ½0; 1�,
αn ¼ 1

4 þ 1
nþ2, β

i
n ¼ 1

nþ2 for i ¼ 1; 2; . . . ; k− 1, where k ¼ 11 and n ¼ 1; 2; . . . ; 100 (see

Tables 1 and 2).

N Explicit multistep fnðxÞ Explicit multistep-SP fnðxÞ Implicit multistep fnðxÞ
0 0.5000x þ 0.9500 0.5000x þ 0.9500 0.5000x þ 0.9500
1 0.4583x þ 0.8708 0.3470x þ 0.6593 0.3904x þ 0.7418
..
. ..

. ..
. ..

.

16 0.2461x þ 0.4676 0.0443x þ 0.0842 0.0695x þ 0.1320
17 0.2383x þ 0.4527 0.0410x þ 0.0779 0.0648x þ 0.1230
..
. ..

. ..
. ..

.

24 0.1917x þ 0.3642 0.0252x þ 0.0480 0.0417x þ 0.0792
25 0.1860x þ 0.3534 0.0237x þ 0.0450 0.0394x þ 0.0748
..
. ..

. ..
. ..

.

60 0.0690x þ 0.1311 0.0043x þ 0.0081 0.0080x þ 0.0152
61 0.0671x þ 0.1276 0.0041x þ 0.0078 0.0077x þ 0.0146
..
. ..

. ..
. ..

.

77 0.0435x þ 0.0827 0.0022x þ 0.0042 0.0042x þ 0.0080
78 0.0424x þ 0.0805 0.0021x þ 0.0040 0.0041x þ 0.0077
79 0.0412x þ 0.0783 0.0020x þ 0.0039 0.0039x þ 0.0075
..
. ..

. ..
. ..

.

101 0.0229x þ 0.0435 0.0009x þ 0.0017 0.0018x þ 0.0035

N Explicit multistep Explicit multistep-SP Implicit multistep

0 1.2 1.2 1.2
..
. ..

. ..
. ..

.

16 0.5906 0.1064 0.1667
17 0.5719 0.0984 0.1554
..
. ..

. ..
. ..

.

24 0.4601 0.0606 0.1001
25 0.4464 0.0569 0.0945
..
. ..

. ..
. ..

.

60 0.1656 0.0103 0.0192
61 0.1611 0.0099 0.0184
..
. ..

. ..
. ..

.

77 0.1044 0.0053 0.0101
78 0.1016 0.0051 0.0098
79 0.0990 0.0049 0.0094
..
. ..

. ..
. ..

.

101 0.0550 0.0022 0.0044

Table 1.
Convergence

Table 2.
Approximates

ρðfn − f Þ
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For this example, the explicit multistep-SP sequence seems to converge to the fixed point
f ¼ 0 slightly faster than the implicit multistep sequence, with approximates ρðfn − f Þunder
10−2 at n ¼ 17 and n ¼ 25 respectively, while the explicit multistep sequence is considerably
slower, with ρðfn − f Þ < 10−2 only from n ¼ 79.

4. Conclusion
In Theorems 2.1–2.3, the fixed points of multivalued maps T with a ρ-contractive-like
associate map PT

ρ in modular spaces are successfully approximated, with supporting proofs
and a numerical example, via the explicit multistep (1.9), the explicit multistep-SP (1.13) and
the implicit multistep (1.15) iterative sequences. These sequences involve more steps (k≥ 1)
than the iterations considered in [6, 7].

In an attempt to prove the stability of these iterations, a new approach is used tomatch the
convexity structure of ρ: the concepts of relative ρ-stability (3.3) and weak ρ-stability (3.4) are
introduced for the first time in literature, as well as the notions of m-strong ρ-quasi-
contraction types (3.5)–(3.7), wherem∈ℕ, which coincide with quasi-contraction types when
ρ is nonnegative homogeneous. Theorems 3.1–3.3 then state conditions under which schemes
(1.9), (1.13) and (1.15) are ρ-stable, relatively ρ-stable and weakly ρ-stable, when PT

ρ is an m-
strong ρ-quasi-contractive-like mapping. The proofs of this theorem are fundamentally
different from those of parallel results in metric spaces as they elegantly cut out the use of
triangle inequality.
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