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Abstract

Purpose - In this paper, the explicit multistep, explicit multistep-SP and implicit multistep iterative sequences
are introduced in the context of modular function spaces and proven to converge to the fixed point of a
multivalued map 7 such that P”, an associate multivalued map, is a p-contractive-like mapping.
Design/methodology/approach — The concepts of relative p-stability and weak p-stability are introduced,
and conditions in which these multistep iterations are relatively p-stable, weakly p-stable and p-stable are
established for the newly introduced strong p-quasi-contractive-like class of maps.

Findings — Noor type, Ishikawa type and Mann type iterative sequences are deduced as corollaries in
this study.

Originality/value — The results obtained in this work are complementary to those proved in normed and
metric spaces in the literature.

Keywords Multistep iterations, Modular function spaces, Strong p-contractions, Relative p-stability,
Weakly p-stability
Paper type Research paper

1. Introduction and preliminary definitions
Modular function spaces are well-known generalizations of both function and sequence
variants of many important spaces such as Calderon—Lozanovskii, Kothe, Lebesgue, Lorentz,
Musielak—Orlicz, Orlicz and Orlicz—Lorentz spaces. Their applications are also very useful.
There is huge interest in quasi-contractive mappings in modular function spaces mainly
because of the richness of structure of modular function spaces: apart from being F-spaces in
amore general setting, they are equipped with modular equivalents of norm or metric notions
and also endowed with convergence in submeasure. It is worthy to mention that modular-
type conditions are far more natural as their assumptions can be easily verified than their
corresponding metrics or norms, especially when related to fixed-point results and
applications to integral-type operators. More so, there are some fixed-point results that can
be proved only using the framework of modular function spaces. Thus, results in fixed-point
theory in modular function spaces and those in normed and metric spaces are complementary
(see, e.g.[1]). Different researchers have proved very useful fixed-points results in the context
of modular function spaces (see [1-6] for details).

The following background definitions in [1, 3, 7] are useful in proving the main results in
this manuscript: I‘
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AJMS Let Q be a nonempty set and X be a nontrivial 6 — algebra of subsets of Q. Let P be a
279 & — ring of subsets of Qsuch that £ N A € Pforany £ € Pand A € X. Assume there exists an

’ increasing sequence (K)o C P such that Q = U,enK,.
Let £ represent the linear space of all simple functions with supports from P, that is,

n
functions s = ) aply,, where (o), 1S @ sequence of real numbers, (Ay),o, is a sequence of
=1

190 disjoint sets in P and I represents the characteristic function of the set A in Q.

Let . , represent the space of all extended measurable functions, that is, all functions
f:Q—[—00, o] such that there exists a sequence (g,)C& satisfying |g,| <|f] and
(@) = f(w) for all w € Q.

Definition 1.1. (7). Let p : .# — [0, o0] be a nontrivial, convex and even function. p is
said to be a regular convex function pseudomodular if:

@ p(0) =0
(2) p is monotone, that is, |f| < |g| on Q implies p(f) <p(g), where f, g € M »;

() p is orthogonally subadditive, that is, p(faup) <p(fl4) + p(flp) for any A, Be Q
such that ANB # ¢, with f € M ;

(4) phasFatou’s property, thatis, |f,(@)|1]f ()| for all w € Qimplies p(f,) tp(f), where
fEeMy;

(6) pisorder continuousin &, thatis, (g,,) C £and |g,(w)|l0for all w € Qimplies p(g,) 0.

Concepts similar to those in measure spaces are defined for function pseudomodular p: a set
A eXissaid to be p-null if p(fly) = 0Vf €&; a property is said to hold p-abmost everywhere
(p-a.e.) on X if the set for which it does not hold is p-null.

The following set is defined:

M, P,p)={f€EMs: |f|] <0p—ae},
where each f € .4 ., is actually an equivalence class of functions equal p-a.e. We will write .#
instead of .#(Q, %, P, p) when no confusion arises.
Definition 1.2. ([1]). Let p be a regular function pseudomodular.
(1) p is said to be a regular function modular if p(f) = 0 implies f = 0 p-a.e.

(2) pis said to be a regular function semimodular if p(af) = 0 for every a > 0 implies
f=0pae

A regular convex function modular p satisfies the following properties (see [3])
1) p(f) =0if f =0p -ae.

@ plaf) = p(f) for every scalar a such that |a| = 1, where f € /.

@) plaf +pg)<ap(f) +pp@)ifa+p=1a p20andf, g€

The class of all nonzero regular convex function modulars on Q is denoted by fR.

Definition 1.3. (7). A convex function modular p defines the modular function space L, as
L,={fed :p(if)—0as A—0}.



L, is a normed linear space with respect to Multistep-type

. (] construction of
Vil = mf{a >0 'P(a <1 fixed point...

which is known as the Luxemburg norm.
Definition 1.4. (7). Let L, be a modular space. The sequence {f,,} C L, is called: 191

(1) p—convergenttofeL,if p(f,—f)—0asn— o
(2) p—Cauchy, if p(f,, — f) = 0 as n, m — .
Remark 1.1. p—convergent sequence implies p —Cauchy sequence if and only if p

satisfies the Ay — condition given in the definition below. However, p does not satisfy the
triangle inequality.

Definition 1.5. (7]). A nonzero regular convex function p is said to satisfy the Ay —
condition, if sup,s19(2fy, Dr) =0 as k— co whenever {D,}10/ and sup,s1p(fy, D) =0
as k- .

Definition 1.6. (7). Let L, be a modular space and D c L,
The p-distance from f € L, to the set D is given by:
dist,(f, D) = nf{p(f — h) : heD}.
A subset DL, is called:
(1) p —closed if the p —limit of a p —convergent sequence of D always belongs to D;

(2) p—ae.closedif the p —a.e.limit of a p — a.e. convergent sequence of D always belongs
to D;

(3) p—compact if every sequence in D has a p —convergent subsequence in D;
(4) p—a.e compact if every sequence in D has a p —a.e. convergent subsequence in D,
(6) p—bounded if diam, (D) = sup{p(f —g) : f, g€ D} < .

(6) p—proximal if for each feL, there exists an element geD such that
p(f —g) = dist,(f, D).
The family of nonempty p-bounded p-proximal subsets of D is denoted by P,(D), the

family of nonempty p-closed p-bounded subsets of D by C,(D) and the family of p-compact
subsets of D by K,(D).

Definition 1.7. (7). Let L, be a modular space. A function f € L, is called a fixed point of a
multivalued mapping 7" : L, — P,(D)if f € Tf. The set of all fixed points of 7T"is represented
by F,(T) so that:

F,(T)={fel,:feIf}.
The following set is also defined:

PI(f) ={g €T : p(f —g) = dist,(f, TF)}.

Zamfirescu [8] in 1972 proved the following theorem as a generalization of the Banach fixed-
point theorem:
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Theorem 1.1. (8)]). Let X'be a complete metric spaceand 7" : X — X a Zamfirescu operator
satisfying:

(1.1)

d(Tx, T) Shmax{d(x, y, 46 19 ; dy, Ty) d, Ty) +2d(y, Tx)]}7

where 0 </ < 1. Then, T has a unique fixed point and the Picard iteration converges to p
for any xy € X.
Observe that in a Banach space setting, condition (1.1) implies

72~ Ty] <l |+ 280~ Tl o= max{k, ;" Aepn) a2

Osilike [9] used the following contractive definition: for each x, y € X, there exist § € [0, 1)
and L20suchthat 7 7y)| <l — yi] + Ll — T (13

Imoru and Olatinwo [10] proved some stability results using the following general contractive
definition: for each x, y€ X, there exist 5€[0, 1) and a monotone increasing function
¢ : Rt - R with ¢(0) = O such that

1 Tx = Ty|| <6llx — vl + ([lx — Tx]]). (14)

Observe that (1.4) generalizes (1.3) and (1.2). The map T considered in (1.2)—(1.4) is single-
valued. Now, we state the generalizations of (1.2)-(1.4) to multivalued mappings, as
conformed to literature. (e.g. see [7]).

Let H,(-, -) be the p —Hausdorff distance on the family C,(L,) of nonempty p-closed
p-bounded subsets of L,, that is,

H,(A, B) = max{supdist,(f, B), supdist,(g, A)}, A, BEC,(L,).
feA geB

A multivalued map 7 : D — C,(L,) is said to be a:

(1) p—contraction mapping if there exists a constant § € [0, 1) such that
H,(Tf, Tg) <ép(f — g), Vf, g €D. (L5)

(2) p—Zamfirescu mapping if
H,(Tf, Tg) <ép(f —g) +2p(h — ), Vf, g€D Vhe Tf. 1.6)

(3) p —quasi-contractive mapping if
H,(Tf, Tg)<ép(f — &) + Lp(h —f), Vf, g€D Vhe Tf, L>0. 1.7

(4) p —quasi-contractive-like mapping if
H,(Tf, Tg) <op(f — &) + @(p(h— 1)), ¥f, €D Vhe Tf. 18

where ¢ : RT — R* is a monotone increasing function with ¢(0) = 0.

Convergence and stability of fixed-point iterative sequences for single mapping 7" are two
very vital concepts in fixed-point theory and applications. Some of the results of colossal
value in this work are those in [9-20]. Rhoades and Soltuz [21] introduced the multistep
iteration and proved its equivalence with Mann and Ishikawa iterations. Olaleru and Akewe
[22] proved convergence of multistep iteration for a pair of mappings (S, 7')



We now introduce the following iterative sequences in the framework of modular function
spaces and use them to prove new fixed-point theorems.

Let T : D — P,(D) be a multivalued mapping.

The explicit multistep iterative sequence {f, },-, C D is defined by:

fo € D
fn+1 = (1 - aﬂ)fﬂ + aﬂvrlzv 19
¢ = (L-B)otfur, i=12 .. k-2 1.9

gt = -5+ w,  n=0,1,2, ...
where u, € P! (f,), v}, € PY(g}),1 =1, 2, ..., k—1,and the sequences {a, },,and {f, b
i=1,2, ...,k—1, arein [0, 1) such that } .7 ja, = .
The explicit Noor iterative sequence {f, },, C Dis defined by:

fo € D
Jo1 = (1 - an)fn + an”,lm
T SR (110)
gn - (1 - ﬁn)fﬂ + ﬂnvm
g = (=B)w+PBunn=0,1,2, ..

{2}, arein [0, 1) such that >"° @, = co.
The explicit Ishikawa iterative sequence {f,},, C D is defined by:

where u, €PT(f,), v, €PT(g}), v2€PT(¢g%), and the sequences {a,};, {B)}, , and

fo € D
fn+1 = (]- - af’l)f;l + aﬂ”}q? (111)
g = (-B)h+Punn=012 ..

where u, ePﬂT (fa), v} EP,,T (g}), and the sequences {a,},", and {ﬁi}:’zo are in [0, 1) such
that > ja, = o0.
The explicit Mann iterative sequence {f, },-, C D is defined by:

fo € D
{fn+1 = (1—a)fy+au,n=0,1,2, ... 112

where u, € P] (£,), {a};C [0, 1) and Y77 @, = 0.
The explicit multistep-SP iterative sequence {f, },-, C D is defined by:

fo € D
f;Hl - (1 - an)g,ll + anv;lz 1.13

gz_l = (1 - zil)f;l +ﬁzilun7 n= 07 1’ 27 te

whereu, € P) (f,), v, €P] (g,),i =1, 2, ..., k—1,and the sequences {a,},”,and B,
i=1,2, ..., k—1arein [0, 1) such that >, ja, = oo.

Multistep-type
construction of
fixed point...
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fo € D
fn+1 = (1 - an)gé + anvglp
g = (1 -y )gz + B (1.14)

where u, €P) (f,), v, €P] (g}), v €P](g2), and the sequences {a,},”, {8}, and
(B2}, arein [0, 1) such that >"¢’a, = oo.
The implicit multistep iterative sequence {f, },-, C D is defined by:

fo € D
f;H—l = (1 - a”)f;il + Wy, (1 15)
fio= =BT B, i=1,2, k=2 '
= =N+, n=0,1,2, ...
where u, 1 €P}(f,), u, €P](f}), i=1,2, ..., k=1, and the sequences {a,},", and

{ﬂﬁz}:io, i=1,2, ..., k=1 arein [0, 1) such that > ja, = 0.
It should be noted that the implicit multistep iterative sequence exists if and only if 7
satisfies the property (I) as follows:

(I): VheD Vpe(0,1)3feD geP!(f): f=(1-ph+pg

The implicit Noor iterative sequence {f, } -, C D is defined by:

f € D

ff’l+1 = (1 - an)fnl + a1,

fl — (1 7ﬂ1)f2 +ﬁ11/£1 (116)
2= (- +p42, n=0,12 ...

where #,.1 € P! (fyi1), uh € PY (), u% € PT(f?), and the sequences {a,};",, {5, 3 and
(B2}, arein [0, 1) such that 3" @, = co.
The implicit Ishikawa iterative sequence {f,},-, € D is defined by:

fo € D
fn+1 = (1 - an)fﬂl + Uy, (117)
o= (A=-B)u+Bul, n=0,12 ...

where 1 € P! (f1), ub € PT(f1), {an}i o € [0, 1), {B}},, € [0, 1) and 35 a1, = 0.



The implicit Mann iterative sequence {f,},-, C D is defined by: Multistep-type

fo € D 118 construction of
fon = (=i +ayn,n=0,1,2, ... ‘ fixed point...

where u,11 € P] (fu41), {a.};C [0, 1) and Y7 ja, = oo.
The following Lemmas will be needed in proving the main results.

Lemma 1.1. (3). Let T : D — P,(D) be a multivalued mapping and P/)T (f)={geTf:
p(f —g) = dist,(f, Tf)}. Then the following are equivalent:

(1) feF,(T), thatis, f e Tf.
@ PI() =1/},

@) feF(PI(f)), that is, feP!(f). Further F,(T) = F(P!(f)) where F(P!(f))
represent the set of fixed points of PpT (f)-

195

Lemma 1.2. (see[13]). Let § be a real number satisfying 0 <6 < land {e,},~,and {7},
two sequences of positive or zero numbers, less than 1, such that lim,_ &, = 0 and
> o otn = oo. Then any sequence of positive numbers {u,},”, satisfying any of the
following properties converges to 0:

1) wupp1 <6u, +e,foralln=0,1,2, ...
@ up1<A-mu,forallm=0,1,2, ...

@) up1 <€+ (1 —1p)uyforalln =0, 1, 2, ...ifinaddition, {z,}, ,is bounded away
from 0.

2. Convergence results

2.1 Strong convergence results for explicit multistep iterative sequences in modular function
spaces

Theorem 2.1. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space L,, and T : D — P, (D) be a multivalued mapping such that PpT isap —quasi-
contractive-like mapping, satisfying contractive-like condition (1.8). Suppose that F/,(T) # @.
Let fy € Dand {f, } C Dbe defined by the explicit multistep iterative sequence (1.9), where the

sequences {ay }, o, {ﬂfl};ozo cl0,1),(¢=1,2, ..., k=1)aresuch that } @, = co. Then
the explicit multistep iterative sequence (1.9) converges strongly to the fixed point of 7.

Proof. Let f € F,(T); from Lemma 1.1, P! (f) = {f} and F,(T) = F(P! (f)).
Using the explicit multistep iterative sequence (1.9) and the convexity of p, we obtain the
following estimate:

Pt =) = pl(1 = a)fy + ] @D
=p[(1 - a)(fy —f) + o (v} — /)]
<A =a)p(f —f) +ap(v), — f).
v, €P(g,) and P (f) = {f} imply that:
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p(v, —f) = dist, (v, P, () <H, (P} (g,), P, (f)),
which combined with (2.1) yields:
pfunt =) <= a)p(f, = f) + @, (P (g,), P} (f)).

In (1.8), letting g = g} and noting that P} (f) = {f} and ¢(0) = 0, we have:

H,(Pl(g,), P](f)) <dp(g, —f) +e(f —h) VheP](f)
<ép(e, —f)-

Substituting (2.3) in (2.2), we obtain
plhir =) S (L= an)p(fu — f) + Saup(g, — f).
Similarly, from (1.9) and the convexity of p,
P& —f) =p[(L=B )+ B, — 1]
=p[(1=B) s =) +5,(v; —1)]

<(1=B))plhn = 1) + By (v — ).
12 € PT(g2) and PT(f) = {f} imply that:
p (v, —f) = dist, (v}, P, (f)) <H,(P, (g;), P, (),
which combined with (2.5) yields:
plg, =) < (L =p)plh — 1)+ BH, (P (g2), P ()

In (1.8), letting g = g2 and noting that P (f) = {f} and ¢(0) = 0, we get:

Pl —F)<(L=B ol = 1)+ Bp(g — ).
Similarly, an application of (1.8) and (.9) gives

plg —F)<(L=B)plfu— 1)+ 5Bp(g, — f)-

Also, an application of (1.8) and (1.9) gives
plg =) <(L=B)plh =) +8Bp(g, —f)-

Substituting (2.9) in (2.8), (2.8) in (2.7) and (2.7) in (2.4), and simplifying, we obtain
Pl =)< [1— (1= 8)a, — (1 —8)sa,p), — (1 — 8)a,p.p-

~(1 = 8)8a, BB + SapBuBip (s —F)-
Continuing this process, an application of (1.8) and (1.9) gives

p(e2—f) < (1= B2l — ) + 87 (8 — f).

2.2)

2.3

2.4)

2.5)

(2.6)

2.7

28)

2.9)

2.10)

@11)



and Multistep-type
P& =) <A =Bl — 1)+ 8B p(f — ). (2.12) construction of
fixed point...
Substituting (2.12) and (2.11) in (2.10) inductively and simplifying, we obtain
k-1
i —N<1-01-=98)a,— 1-6)8a,pLpe...p 213
plfu1 = 1) [ (1-9) ; 1-9) 197

+ 8BS B — )
5[1 - (1 - 5)“12}/’(]‘;1 —f)

From (2.13), we inductively obtain

n

P —f) < |:H(1 -(1- 5)(1,”):|p0[0 —f). 214

m=0

Using that fact that §€(0, 1) {a,},-, 0, 1) satisfying > ;a, = oo, then from (2.14),
we obtain

limp(fy1 —f) < Em [ (1 = (1= )l —f) = 0. 215)
m=0

Therefore, {/,} p-converges to f € F,,(T). The proof is complete. m

Since the explicit Noor (1.10), explicit Ishikawa (1.11), explicit Mann (1.12) iterative
sequences are special cases of the explicit multistep iterative sequence (1.9) (see [22] for
details), then Theorem 2.1 leads to the following corollary:

Corollary 2.1. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space L,, and T : D — P, (D) be a multivalued mapping such that P/,T isap —quasi-
contractive-like mapping, satisfying contractive-like condition (1.8). Suppose that
FE,(T)#9/. Let fyeD and {f,} D be defined by the explicit Noor (1.10), the explicit
Ishikawa (1.11) and the explicit Mann (1.12) iterative sequences respectively, where the
sequences {a, }o2 o, (AL} o, 1%} C [0, 1) are such that 3¢, = co. Then:

(1) the explicit Noor iterative sequence (1.10) converges strongly to the fixed point
of T.

(2) the explicit Ishikawa iterative sequence (1.11) converges strongly to the fixed point
of T.

(3) the explicit Mann iterative sequence (1.12) converges strongly to the fixed point of 7'.

2.2 Strong convergence results for explicit multistep-SP iterative sequences in modular
Sfunction spaces

Theorem 2.2. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space L,,and 7" : D — P,(D) be a multivalued mapping such that PPT isap —quasi-
contractlve like mapping, satisfying contractive-like condition (1.8). Suppose that

F,(T)#@/. Let foeD and {f,} cD be defined by the explicit multlstep SP iterative
sequence (1.13), where the sequences {a,}=, {#.}, ,C[0,1), (=1,2, ..., k—1) are
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such that }"’a, = oo. Then the explicit multistep-SP iterative sequence (1.13) p-converges to
a fixed point of 7.

Proof. Let f € F,(T). From Lemma 1.1, we have that P! (f) = {f} and F,(T) = F (P} (f)).
Using the explicit multistep-SP iterative sequence (1.13) and the convexity of p, we obtain the
following estimate:

plhwir =) = pl(1 = @)g, + aw, - f] (2.16)
= o[- @) (g — 1) +a (v, —1)]
<(I = a)p(g, —f) +ap(v, —f).
Since v, € P (g}) and P (f) = {f}, we have
p(v, —f) = dist, (v, P, () <H, (P, (g,). B, (f)),

which combined with (2.16) yields:

pUfis =) <A —a)p(es — F) + aH, (Pl (gh). P (f)). 2.17)
In (1.8), letting ¢ = g! and noting that PPT (f) = {f} and ¢(0) = 0, we get
H,(P)(g,), P, (f)) <6p(g, — ) + #(0) = 6p(g, — f). 2.18)
Substituting (2.18) in (2.17), we obtain
plfur =) < (1= an)p(g, = f) + 0ap(g, — f) 219)

=[1-(1-8alp(g, —f).
Next, from (1.13) and the convexity of p,
pley—1) =pl(L=B)e + B, /] (220
=pl(1=5) (& =F) +5.(; 1)
<(1-B)rlg: — 1) + B (v; —1)-
Since v% € P! (¢2) and P! (f) = {f}, we have
p(v, —f) = dist,(v;, P, (1)) <H, (P, (g;), P, (),
which combined with (2.20) yields:
p(g,—1)<(L=p)p(g —F) +B,H, (P, (&), Py () (2.21)

Using (1.8) with ¢ = g2 in (2.21) and noting that ¢(0) = Oand P} (f) = {f}, then we get the
following:

P&, =)< (L= P)oles—f) + (e, ) (222)
=[1-01-5)8lp(g ~ 1)
Similarly, an application of (1.8) and (1.13) gives
P& =)= (1=B)p(g)—F) +8bp(g /) 223



=[1-(1-9plr(e 1)
Also, an application of (1.8) and (1.13) gives
P& =)< (L =B)r(g, — ) + (g, —f) @224)
=[1-01-38)plr(g, 1)

Continuing this process, an application of (1.8) and (1.13) gives

p@? =) <(Q=p7)ple —f) +p7%p(d - /) (2.25)
=[1-Q-8)87p(g - /).
and P& =) <=l — )+ 0B p(fu — f) 2.26)

=[1- (1 -8 plf, — 1)

Substituting (2.22)—(2.26) in (2.19) inductively and simplifying, we obtain
k1
p(fn+1_ )<( anH 1_ 1_6)ﬁ >p(fn_f) (227)
=1
5[1 - (1 - 6)(112}:0(](71 _f)

From (2.27), we inductively obtain

ol —F) <[00~ (1 - Sanlpth — 7). 229

m=0

Using that fact that §€ [0, 1) {a,},>, C [0, 1) satisfying > @, = oo, then from (2.28), we
obtain

limp(fy1 —f) < Em [ (1 = (1= )l —f) = 0. (229)
m=0

Therefore, lim,,_.p(f, —f) = 0, where f € F,,(T'). The proof is complete.
Theorem 2.2 leads to the following corollary:

Corollary 2.2. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space L,, and T : D — P, (D) be a multivalued mapping such that PpT isap —quasi-
contractive-like mapping, satisfying contractive-like condition (1.8). Suppose that F/,(T) # @.
Let foeD and {f,} cD be defmed by the explicit SP iterative sequence (1.14), Wlth the
sequences {a, }o o, 1AL}, {2} C [0, 1) such that 3"a, = co. Then, the explicit SP
iterative sequence (1.14) p-converges strongly to a fixed point of 7.

2.3 Strong convergence results for implicit multistep iterative sequences in modular function
spaces

Theorem 2.3. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space L,. Let T:D— P, (D) be a multivalued mappmg satisfying property (I)
and such that PT is a p—quasi-contractive-like mapping, satisfying contractive-
like condition (1.8). Suppose that F,(7)#@/. Let fy €D and {/,} CD be defined by the
implicit multistep iterative sequence (1.15), where the sequences {a,}o> o, {£}.,C [0, 1)
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(i=1,2, ...,k=1) are such that Y o’a, = co. Then, the implicit multistep iterative
sequence (1.15) p-converges strongly to a fixed point of 7.

Proof. Let f € F,(T). From Lemma 1.1, we have that P (f) = {f} and F,(T) = F(P] (f)).
Using implicit multistep iterative sequence (1.15) and the convexity of p, we obtain the
following estimate:

plfun =) = pl(1 = @)f; + @yt — /] (2.30)
=p[A—a)(fy —f) + &ty — )]
<A —a)p(fy —f) + p(ttyer — )
Since w11 € P} (fu11) and P} (f) = {f},
plttni1 — f) <disty (w1, P! (f)) <H, (P! (fu1), PL(F)),

which combined with (2.30) gives

,0(fn+1 _f) < (1 - an)p(fnl _f) + aan (PZ(f’Hl)’ Pz(f)) (231)
In (1.8), by letting ¢ = £,,+1 and noting that ¢(0) = 0 and PpT(f ) = {f}, we get:
H, (P/,T(fnﬂ)» PZ ) <6p(furr —f) + 0,(0) = 6p(fur1 — f). 232

Substituting (2.32) in (2.31), we obtain
P —f)<(1— aﬂ)p(f;} _f) + 60, (i1 — f)

That is, 1—

Qay
— <
p(f;H—l f) = [1 — 50”

}p(f; ) (2.33)

Next, from (1.15) and the convexity of p, we have
ol = 1) =p[(L= B +B,)u — 1] (2349
=p[(L=B) U =) + B, (1, = /)]
= (=)l =) +Bop(w, = 1).
Since u, € P} (f,) and P! (f) = {f},
P, ) = disty (w,, P, () <H, (P, (f,), P, (),

which combined with (2.34) gives:

p(h =) < (=Pl = 1) +B.H, (B (), PL(F))- (2.35)
By letting ¢ = £} in (1.8) and noting that ¢(0) = 0 and PPT (f) = {f}, we get:
Hy(P) (1), P, () <op(fyy —f) + @,(0) = dp(f, —f) (2:36)

Substituting (2.36) in (2.35), we obtain
pUhy =)< (=B = F) + 8By — 1)



That is,

1 1_ﬁ;11 2
i e 1] 37
Similarly, an application of (1.8) and (1.15) gives
2
pfy—f) < 11_5/;3}/)(1‘5—1’)- 2.38)
3 1-5, 4
Uy —f) < 1_5/33} Vi =7). (239)
1 i' 2
(it —1)< [1_ e 2} (7 =5). 240)
k—1
p(,f‘l— f)g[l b ] (o — ). 241)

Substituting (2.37)—(2.40) in (2.33) inductively and simplifying, we obtain

1— a, k1 1— ﬁl
Pl —f) < [1 — MJ m T s ﬂij p(fo — 1) (2.42)
Observe that
1-a, 1 !
1_—606”51—(1,1—1—50!,1, |:1_5ﬁil:| <1- ﬁn—i-(‘)'ﬂn, = , ey k—1 (243)
Substituting (2.43) in (2.42) and simplifying, we obtain
pUnin =) <1 = (1 =d)ap(fu — f)- (244)
From (2.44), we inductively obtain
pUha =) <[00 = (@ = S)anlplfe — /). (2.45)
m=0

Using that fact that 5 € [0, 1) {a, },, C [0, 1) satisfying Y _,° ja, = oo, then from (2.45), we
obtain

limp(s ) <m0 - (1 = oty 1) =0 246)

m=0

Therefore, lim,,_..p(f, —f) = 0, with f € F,(T). The proof is complete. m
Theorem 2.3 leads to the following corollary:

Corollary 2.3. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space L,. Let T : D — P,(D) be a multivalued mapping satisfying property (I), such
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that P/,T is a p —quasi-contractive-like mapping, satisfying contractive-like condition (1.8).
Suppose that F,(T) #@. Let fyeD and {f,} cD be defined by the implicit Noor (1.16),
implicit Ishikawa (1.17) and implicit Mann (1.18) iterative sequences respectively,
where the sequences {a, }> o, {BL} -, {2}, € [0, 1) are such that 3"*a, = co. Then:

(1) the implicit Noor iterative sequence (1.16) converges strongly to the fixed point of 7.

(2) the implicit Ishikawa iterative sequence (1.17) converges strongly to the fixed point
of T.

(3) the implicit Mann iterative sequence (1.18) converges strongly to the fixed point of 7.

3. Stability results for strong p-quasi-contractive-like maps

In this section, conditions for some stability types of the explicit and implicit multistep
iterative sequences are stated and backed by proofs in the framework of modular function
spaces.

The first important result on 7" — stable single mappings was proved by Ostrowski [18]
for Picard iteration. Berinde [13], presented useful explanation on how to obtain the stability
of various iterative sequences. Okeke and Khan [7] gave a similar version of stability results
for multivalued mapping in modular function spaces.

In this paper, we introduce two other versions of p-stability and attempt to relate them
with the concept of p-stability in literature.

Definition 3.1. Let D be a nonempty p —closed, p —bounded and convex subset of a
p —complete modular space L, and T :D—P,(D) be a multivalued mapping with
F,(T) # @. Suppose that a fixed-point iterative sequence defined by

fn+1 = F( T, fn) (31)

with initial guess fy €D and F'is a given function, converges to a fixed point f of 7. Let
{hy,}:2, be an arbitrary sequence in D. The fixed-point iterative sequence is said to be:

(1) p-stable with respect to 7' if and only if
lime, = 0= lim#%, = f, where ¢, = p(h1 — F(T, h,)). 3.2

n—o00

(2) relatively p-stable with respect to T if and only if
limé§, = 0= lim#, = f, where 6, = p(hy1 — F) — p(F(T, h,) — f). (3.3

n—oo

(3) weakly p-stable with respect to 7 if and only if

sup Ap (M) —0= inf ip (?) 0. (34)

21e(0.1] A

The term “relatively” in (2) is employed because the premise of the convergence of {%,,} to fis
hinged to the fact that p(h,,,1 — f) and p(F(T, h,) — f) get closer to each other as # increases.
It is not known if this concept is directly related to p-stability as defined in [7]. If p satisfies the
triangular inequality (an unwanted condition in this paper), the relation between relatively
p-stability and p-stability is as follows: (1) a relative p-stable fixed-point iteration is p-stable if



8, > 0 for n sufficiently big since |5,| < &,; (2) a p-stable fixed-point iteration is relatively
p-stable if for # sufficiently big, §, < 0and |6,| < &,

However, a p-stable fixed-point iteration is weakly p-stable, hence the term “weakly.”

In this sequel, we also introduce the following concepts of strong quasi-contractions
particular to modular function spaces and compatible in some sense to the newly introduced
stability notions.

Definition 3.2. Let H,(-, ) be the p-Hausdorff distance on the family C,(L,) of nonempty
p-closed p-bounded subsets of L, that is,

H,(A, B) = max{supdist,(f, B) , supdist,(g, A)}, A, BEC,(L,).
feA geB

A multivalued map 7" : D — C,(L,) is said to be an:

(1) m-strong p —contraction mapping, where m € N, if there exists a constant § € [0,1)
such that

H,(TY, Tg) <mép (%) v, geD, 35)
(If 6 =1in (3.5), T is said to be an m-strong p-nonexpansive mapping)

(2) m-strong p — quasi-contractive mapping, where m € N, if

f—g

H,(Tf, Tg) <mdp <7) +Lph—f),Vf, geD YheTf,L>0;.  (36)

(If 6 =11in (3.6), T is said to be an m-strong p-quasi-contractive mapping)

(3) m-strong p — quasi-contractive-like mapping, where m € N, if

H,(Tf, Tg) <mép <%> +op(h—f)), Vf,g€D VheTf. (3.7

where ¢ : R™ - R* isa monotone increasing function with ¢(0) = 0.(If § = 1in (3.7), T'is

said to be a m-strong p-quasi-contractive-like mapping).

Given any m €N, an m-strong p-contraction (resp. p-quasi-contractive mapping,
or a p-quasi-contractive-like mapping) is a p-contraction (resp. p-quasi-contractive
mapping, or a p-quasi-contractive-like mapping), thus, the convergence results in the
previous section hold for m-strong p-quasi-contractive-like mappings. The converse is
trivial when m = 1.

3.1 Stability results for explicit multistep iterative sequences in modular function spaces

Theorem 3.1. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space Ly, and T : D — P,(D) be a multivalued mapping such that PPT is an m-strong

p-quasi-contractive-like mapping, satisfying contractive-like condition (3.7), where m € N.
Suppose that F,(T)#@. Let fyeD and {f,} cD be defined by the explicit multistep

iterative sequence (1.9), where the sequences {a, }, . {ﬂﬁz};c;o cl0,1)(E=1,2, ...,k=1)
are such that {a,},_ is bounded away from 0. Then, (1.9) is:

(1) relatively p-stable with respect to T'if m = 1,
(2) weakly p-stable with respect to 7" if m > 1.
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AJMS (3) p-stable withrespectto T'ifm > landVgeDp(g—f) = mp (é’%) where f € F,(T)
279 (in this case, P7 is a p-quasi-contractive-like map).

Proof. Let {a,}o0, {B,}oC[0,1) (i = 1,2, ..., k—1)besequences such that {a, }2* , is
bounded away from 0.
Let {h,},2, be an arbitrary sequence in D and set:

204

& = p(]/l}'l+1 - (1 - an)hn - anzi)

5n :p(hn+1 _f) —P((l - an)hn +O!,12711 _f)

1 |
Y, = Sup Ap (hnH 1= @)k, anzn) 3.8
1e(0.1] A
§= (1= )b+ A" =12 oo k2
sl = (1 —ﬂffl)hn +p5w,, n=0,1,2, ...
where w, € P (h,) and 2, € P (s,),i = 1,2,...,k—1.
Let:
h, —f a
nm — 1- n i —= 1 . .
Foan = ( a)p( ” )+mp(n f) (39)
By the convexity of p, we have:
p(hn+1 _f) = 6;1 +P((1 - an)hn + anz;ll _f)
:6¢1 +p((1_aﬂ)(hn_f)+an(zylz _f)) (310)
S 571 + Tn1-
If m > 1, we have:
hn+1 _f _ ay hn+1 - (1 - an)hn - anz,lz hn - n (.1
o(25) =0 a,,z e )
S%p (hn+1 - (1 — aﬂ)hn - anz;ll) + T (311)
m a,
SQ + Ynm-
m
and if in addition Vg €D p(g—f) = mp (é%) ,
Nyt — hpn — (L —a)hy, — a2t 1—a, a,
(st -yt L, gy )
3.12)

1
S —&y + 711,771 .
m



Since z), € P} (sy,), then p(z}, — f) = dist, (z),, P! (f)) <H,(P! (s}), P (f)) hence: Multistep-type

hy — ; construction of
Fam < (1 — an)p( — f) +%H (P) (s,) P, (). G139 " fized point..
Using (3.7) and (3.8), and noting that ¢(0) = 0, we get the following:
hn - f 5114 B f

Using the convexity of p in (3.8), and the fact that 22 € PT( +), we have

sy —f by — 1 z—f

<(1-p)p <h f> ”dzst(n, PT(f))

s(l—ﬂ}l)p(%) ﬁ”H( ACIRAGE

Using (3.7) and noting that ¢(0) = 0, then we get the following:

Sill _f ol hn_f 1 Si _f
o) c-mo(tt) oo (21). 816
Substituting (3.16) in (3.15), then in (3.14), we obtain
hn _f S;ll _f
Vnm S (1 - an)p <7) + 5an,0< m > (317)

_ 3 -
<(1-a)p <hm / > + 8, (1— f)p <%) Py (snm f)
hﬂ - 2 —_
S[l -1 =d)a, - anﬁ;lz(s}p ( o f) + ézanﬁilzp <snm f>

Similarly, successive applications of (1.8) and (3.3) give:

2 _ _ 3

, SsT_f> <a —ﬂﬁ)&%) +6ﬁnp( ”;f)

3.18)
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Substituting (3.18) in (3.17), and simplifying, we obtain

o <[1= (1= 8)ay)p (h” —/ ) : (3.19)
m
Hence we have the equations:
Py =) 80+ [1 = (1 = S)anlp(hy — f) (3.20)
and if m > 1,
p (%) s% +1—(1=dalp (h”;f ) ‘ (321)

m

and if in addition Vg € D p(g — f) = mp u)

pllis ) S+ (L= (1= O)loll, 7). (322)

(1) Ifm =1, then from (3.20) and Lemma 1.2, lim,,_, .6, = 0= 7, — f. Thus, the fixed-
point iteration (1.9) is relatively p-stable.

(2) Suppose now that m > 1 and that lim,,_.y, = 0.
Then by (3.21)and Lemma 1.2, p (%) — Oand mp (@) — 0. Thus, the fixed-point

m

iteration (1.9) is weakly p-stable.
(3) Suppose that 7 > 1and that Vg € Dp(g—f) = mp (gﬁf) Iflim,_ &, = 0, then by
(3.22) and Lemma 1.2, &, — f. Thus, the fixed-point iteration (1.9) is p-stable. n

Theorem 3.1 leads to the following corollary:

Corollary 3.1. Let D be a p—closed, p —bounded and convex subset of a p —complete
modular space L,, and 7" : D — P, (D) be a multivalued mapping such that P/,T is an m-strong
p-quasi-contractive-like mapping, satisfying contractive-like condition (3.7), where m € N.
Suppose that F,(T) #/. Let fo €D and {f,} C D be the explicit Noor (1.10), the explicit
Ishikawa (1.11) or the explicit Mann (1.12) iterative sequence, where the sequences

%?,3};:0,{ },};OZO, {ﬂi};‘;o c[0,1) are such that {a,}, . is bounded away from 0. Then
)18

(1) relatively p-stable with respect to T if m = 1,
(2) weakly p-stable with respect to T if m > 1.

(3) p-stable withrespectto T'ifm > landVgeDp(g—f) = mp (5%) where f € F,(T)
(in this case, P/,T is a p-quasi-contractive-like map).

3.2 Stability results for explicit multistep-SP iterative sequences in modular function spaces

Theorem 3.2. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space Ly, and T : D — P,(D) be a multivalued mapping such that PpT is an m-strong



p-quasi-contractive-like mapping, satisfying contractive-like condition (3.7), where m € N. . Multistep-type
Suppose that F,(T)#@. Let foeD and {f,} cD be defined by the explicit multistep construction of

iterative sequence (1.13), where the sequences {a, }5* o, {8} o C[0,1) (=1,2,....k=1)  fixed point...
are such that {a, },> is bounded away from 0. Then, (1.13) is:

(1) relatively p-stable with respect to T'if m = 1;

(2) weakly p-stable with respect to T if m > 1. 207

(3) p-stable withrespectto T if m > landVg € Dp(g —f) = mp (g ;/ ) where f € F,(T)
(in this case, P/)T is a p-quasi-contractive-like map).

Proof. The method of proof is similar to that of Theorem 3.1. m
Theorem 3.2 leads to the following corollary:

Corollary 3.2. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space L,,and T : D — P, (D) be a multivalued mapping such that P/,T is an m-strong

p-quasi-contractive-like mapping, satisfying contractive-like condition (3.7), where m € N.
Suppose that F,(T) #@. Let foeD and {f,} D be defined by the explicit SP iterative

sequence (1.14), with the sequences {@, },=, {ﬁ}l};o:o, {ﬂfl}:;o c [0, 1) such that {a, },o is
bounded away from 0. Then (1.14) is:
(1) relatively p-stable with respect to T'if m = 1;
(2) weakly p-stable with respect to T if m > 1,
(3) p-stable withrespectto T'ifm > landVgeDp(g—f) = mp (%) where f € F,(T)
(in this case, P/)T is a p-quasi-contractive-like map).

3.3 Stability results for implicit multistep iterative sequences in modular function spaces

Theorem 3.3. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space L,. Let T : D — P,(D) be a multivalued mapping satisfying property (I),
such that P/)T is an m-strong p-quasi-contractive-like mapping, satisfying contractive-

like condition (3.7), where m €N. Suppose that F,(T)#§/. Let fy€D and {f,} cD be
defined by the implicit multistep iterative sequence (1.15), where the sequences

{a )20, I} ,cl0,1) (i=1,2, ..., k1) are such that {a,}, is bounded away
from 0. Then, (1.15) is:

(1) relatively p-stable with respect to 7'if m = 1,

(2) weakly p-stable with respect to T if m > 1.

() p-stable with respect to T'if m > land Vg € Dp(g —f) = mp (gm;f> where f € F,(T)
(in this case, PpT is a p-quasi-contractive-like map).

Proof.
Let {a,}20, {£} C [0, 1) be sequences such that {a, }* is bounded away from 0.
Suppose f € F,(T). Let {h,},7, is an arbitrary sequence and set:



97‘];1;/[8 &y = p(hn+1 - (1 - aﬂ)h}q - anzn+1)a

5}2 = p(hn+1 _f) - ﬂ((l - an)h;li + azn1

208 2€(0,1] A

n

Wherezn+1 EP/,T(th»l)v Zi; EP/;T(hZ% i= 17 27 Tt k-1.
Let:

1
Tnm = ( an)P (h m f) + anp(ZHJrl _f)

By the convexity of p, we have:

p(hn+1 _f) = 5;1 + P((l - an)hi + a712n+1 -

hn - 1_ nhl_ NRN
SR BTSN

W= (- + pd, i=1,2 ...,

_f)a

_ ) k—2
= =+ B2 n=0,1,2, .

= 6y +P((1 — ) (h,ll _f) + au(2u1 — 1))

S(Sn + 7.

If m > 1, we have:

p(m) —) (an hn+1 (1 an)]/l — MpZp+1 + (1 N ) - f ZZ(ZHJA f))

m m a,
ay hn+1 (1 a;z)h — 02yl
<—p ( +Vum
m a,
}’n
+ ;,n m

and if in addition Vg€D p(g—f) =mp (u) ’

m

m m m

hn - hn - 1 Qy h — A2y 1—0,1
p( a f)_p( A= (=)=t 1=t

<—&,+"um-
m

a?l

+%(2n+1 f))

(3.23)

(329

(3.25)

(3.26)

(3.27)



Since z,,,1 € P/,T (My41), from (3.24) and (3.7) we have that:
Tam = (1= an)p <h1—f> + a"p(ZM )
m
=1-a)p <h’117_f> + %dfstp (2041, P (1))
sa—an)p(h}lT‘f) AN AG)

Using the convexity of p in (3.23), and the fact that z, € P} (i), we have

p<h1mf> (1o (2 f>+ﬁ (=)

+‘%dist (z,, P (1))

ny = p

Thus:

Similarly, we have the following:

R —f 1-4 by —f
()<= (5)
Wt —f 1—pi? Bt —f

(5 =ik (57)

<(-p)p (’15 ~f ) Loy o), 7))
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3.28)

(3.29)

(3.30)

3.31)
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It —f 1= (h—f
()

Substituting (3.29) — (3.32), and simplifying, we obtain

ol — -1 hn - h” —
Fum < (1 — a) {H - ;;’l._l}p( — f) +5anp<#f)

i=1 (3.33)
hn _f hﬂ’Hrl _f
< — —_— .
<@ an)p( ” ) + 5anﬂ( - )
Hence, substituting (3.33) in (3.25)—(3.27), we have the equations:
1- ay
Pl =)0+ (1 =g ) plhy = 839
andif m > 1
’ hn - n 1 —ay hn -
(s e
and if in addition Vg € D p(g —f) = mp (gm—f)
hn - €y 1 — ay hn -
p<%>sﬁ+(l—&x >p< mf)' (3:36)

(1) If m =1, then from (3.34) and Lemma 1.2, lim,,_,o,6, = 0=%,, > f. Thus the fixed-
point iteration (1.15) is relatively p-stable.

(2) Suppose now that 7 > 1 and that lim,_,«y, = 0.
Then by (3.35) and Lemma 1.2, p (%) — 0. Thus mp (%) — 0. Thus, the fixed-
point iteration (1.15) is weakly p-stable.

(3) Suppose that m > 1and that Ve € Dp(g —f) = mp (g%) If limy,_, o0&, = 0, then by
(3.36) and Lemma 1.2, &, — f. Thus, the fixed-point iteration (1.15) is p-stable. m

Theorem 3.3 leads to the following corollary:

Corollary 3.3. Let D be a p —closed, p —bounded and convex subset of a p —complete
modular space L,. Let T : D — P,(D) be a multivalued mapping satisfying property (I), such
that PT is an m-strong p-quasi-contractive-like mapping, satisfying contractive-like condition
(3.7), where m € N. Suppose that F,(T") # @. Let fy € Dand {f,,} ¢ Dbe defined by the implicit
Noor (1.16), implicit Ishikawa (1.17), implicit Mann (1.18) iterative sequence respectively,
where the sequences {a,}5° o, 1AL}, s 1F2 ) € [0, 1) are such that {a,}5, is bounded
away from 0. Then, (1.16)—(1.18) are:

(1) relatively p-stable with respect to T if m = 1,
(2) weakly p-stable with respect to T if m > 1.

(3) p-stable withrespectto Tifm > landVgeD p(g—f) = mp ("%) wheref € F,(T)
(in this case, P/,T is a p-quasi-contractive-like map).



3.3.1 Numerical example. Let M[0,1] be the collection of all real-valued measurable Multlstep -type
functions on [0, 1] and p : M[0, 1] - R a convex function modular defined by p(f) = f Ifl construction of

vfeM[0,1].LetD = {feL,: 0<f(x) <2 Vxe|0, 1]} beasubset of the modular functlon fixed point...
space L, = M0, 1] defined by p. D is nonempty, closed and convex.

Define map T": D— P,(D) by Tf = {6/}, where 6 = 0.9. T satisfies property (), has a
unique fixed point f = 0(since 0 € 7°(0)),and P/,T isa p-contraction, with P/JT (f) ={Tf} vf €D.

N . . 211

In fact, P, is an mstrong p-strong contraction for all m € N, since p(g) = mp (%)

We present the results of convergence to f = 0 of a multistep iterative sequence (1.9), an
explicit multistep-SP iterative sequence (1.13) and an implicit multistep iterative sequence (1.15)
using MATLAB The parameters used are the following: fy(x) = 0.5x 4+ 0.95 Vx €0, 1],
a, = 4—1—%2, 7%2 for i =1,2, ..., k=1 where k=11 and n=1,2,...,100 (see
Tables 1 and 2)
N Explicit multistep £, (x) Explicit multistep-SP £, (x) Implicit multistep f, (x)
0 0.5000x + 0.9500 0.5000x + 0.9500 0.5000x + 0.9500
1 0.4583x + 0.8708 0.3470x + 0.6593 0.3904x + 0.7418
i6 0.2461x + 0.4676 0.0443x + 0.0842 0.0695x + 0.1320
17 0.2383x + 04527 0.0410x + 0.0779 0.0648x + 0.1230
24 0.1917x + 0.3642 0.0252x + 0.0480 0.0417x + 0.0792
25 0.1860x + 0.3534 0.0237x + 0.0450 0.0394x + 0.0748
60 0.0690x + 01311 0.0043x + 0.0081 0.0080x + 0.0152
61 0.0671x + 0.1276 0.0041x + 0.0078 0.0077x + 0.0146
77 0.0435% + 0.0827 0.0022x + 0.0042 0.0042x + 0.0080
78 0.0424x + 0.0805 0.0021x + 0.0040 0.0041x + 0.0077
79 0.0412x + 0.0783 0.0020x + 0.0039 0.0039x + 0.0075
: : : : Table 1.
101 0.0229x + 0.0435 0.0009x + 0.0017 0.0018x + 0.0035 Convergence
N Explicit multistep Explicit multistep-SP Implicit multistep
0 12 12 12
16 05906 0.1064 0.1667
17 05719 0.0984 0.1554
24 0.4601 0.0606 0.1001
25 0.464 0.0569 0.0945
60 0.1656 00103 00192
61 0.1611 0.0099 0.0184
77 01044 0.0053 00101
78 0.1016 0.0051 0.0098
79 0.0990 0.0049 0.0094 Table 2.
: : : Approximates
101 0.0550 0.0022 0.0044 p(fn—
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For this example, the explicit multistep-SP sequence seems to converge to the fixed point
f = 0Oslightly faster than the implicit multistep sequence, with approximates p(f,, — f) under
10~2at n = 17 and n = 25 respectively, while the explicit multistep sequence is considerably
slower, with p(f,, — f) < 1072 only from n = 79.

4. Conclusion

In Theorems 2.1-2.3, the fixed points of multivalued maps 7 with a p-contractive-like
associate map P[,T in modular spaces are successfully approximated, with supporting proofs
and a numerical example, via the explicit multistep (1.9), the explicit multistep-SP (1.13) and
the implicit multistep (1.15) iterative sequences. These sequences involve more steps (2 > 1)
than the iterations considered in [6, 7].

In an attempt to prove the stability of these iterations, a new approach is used to match the
convexity structure of p: the concepts of relative p-stability (3.3) and weak p-stability (3.4) are
introduced for the first time in literature, as well as the notions of m-strong p-quasi-
contraction types (3.5)—(3.7), where m € N, which coincide with quasi-contraction types when
p is nonnegative homogeneous. Theorems 3.1-3.3 then state conditions under which schemes
(1.9), (1.13) and (1.15) are p-stable, relatively p-stable and weakly p-stable, when P7 is an m-
strong p-quasi-contractive-like mapping. The proofs of this theorem are fundlémentally
different from those of parallel results in metric spaces as they elegantly cut out the use of
triangle inequality.
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