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Abstract

Purpose – The central idea of this research article is to examine the characteristics of Clairaut submersions
from Lorentzian trans-Sasakian manifolds of type (α, β) and also, to enhance this geometrical analysis with
some specific cases, namely Clairaut submersion from Lorentzian α-Sasakian manifold, Lorentzian
β-Kenmotsu manifold and Lorentzian cosymplectic manifold. Furthermore, the authors discuss some results
about Clairaut Lagrangian submersions whose total space is a Lorentzian trans-Sasakian manifolds of
type (α, β). Finally, the authors furnished some examples based on this study.
Design/methodology/approach – This research discourse based on classifications of submersion, mainly
Clairaut submersions, whose total manifolds is Lorentzian trans-Sasakian manifolds and its all classes like
Lorentzian Sasakian, Lorenztian Kenmotsu and Lorentzian cosymplectic manifolds. In addition, the authors
have explored some axioms of Clairaut Lorentzian submersions and illustrates our findings with some non-
trivial examples.
Findings –Themajor finding of this study is to exhibit a necessary and sufficient condition for a submersions
to be a Clairaut submersions and also find a condition for Clairaut Lagrangian submersions from Lorentzian
trans-Sasakian manifolds.
Originality/value – The results and examples of the present manuscript are original. In addition, more
general results with fair value and supportive examples are provided.

Keywords Clairaut submersion, Anti-invariant submersion, Lorentzian trans-Sasakian manifolds,

Clairaut Lagrangian submersion

Paper type Research paper

1. Introduction
The conception of Riemannian immersion is studied extensively together with starting the
study of Riemannian geometry. In fact, Riemannian manifolds are studied first as surfaces
imbedded in R3. In 1956, Nash [1] proved that a revolution for Riemannian manifold that all
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Riemannian manifolds are isometrically embedded at any small part of Euclidean space.
Consequently, the differential geometry of the Riemannian immersion is commonly noted,
and it can be found in different text books such as ([2, 3]).

Contrastingly, “dual” concept of Riemannian immersions is one of the famous research
fields in differential geometry and is the theory of Riemannian submersions, which was first
investigated byO’Neill [4] and Gray [5].Watson [6] popularized the knowledge of Riemannian
submersions considering almost Hermitian manifolds in terms of almost Hermitian
submersions. Afterward, almost Hermitian submersions are discussed with in various
subcategories of almost Hermitian manifolds. Also, Riemannian submersions are enhanced
considering many subcategories of almost contact metric manifolds in terms of contact
Riemannian submersions. Several materials about Riemannian, almost Hermitian or contact
Riemannian submersions are available in reference [2].

Most of the research linked to the theory of anti-invariant Riemannian, Lagrangian
submersions and Clairaut anti-invariant submersions is available in Şahin’s book [3].
Afterward, several kinds of Riemannian submersions appeared, for example: semi-invariant,
slant, pointwise-slant, semi-slant, hemi-slant and generic submersions. Most of the studies
related to these can also be found in Şahin’s book [3].

In 1972, Bishop [7] proposed the concept and conditions of a Clairaut submersion in
terms of a natural generalization of a surface of revolution. Under these circumstances, for
every geodesic σ at the surface S, function γSinΘ is constant through σ, here γ is a metric
between the point at surface and rotation axis, also Θ defines angle within σ and meridian
through σ.

The concept of anti-invariant Riemannian and Clairaut anti-invariant submersion has
been fitting a very progressive geometric analysis field since Şahin [8] essentially described
such submersions of almost Hermitian manifolds on Riemannian manifolds. Indeed, anti-
invariant Riemannian and Clairaut anti-invariant submersion have been examined in various
types of geometrical manifolds, namely K€ahler [8–10], almost product [11], Sasakian [12, 13],
Kenmotsu [13], cosymplectic [30], paracosymplectic [14, 15] and trans-Sasakian manifolds
[16–18]. Note that this concept of anti-invariant Riemannian submersion is generalized to
conformal anti-invariant submersions [19–21].

In [22], Allison proposed Clairaut submersions in case the total manifold is Lorentzian. In
addition, it is discovered that Clairaut submersions are used for static spacetime applications.
Basically, a static spacetime can be considered as a Lorentzian manifold.

On the other hand, in 2013, De et al. [23] presented the concept of Lorentzian trans-
Sasakian manifolds. Trans-Sasakian structure together with Lorentzian metric can be
applied naturally at the odd dimensional manifold. Motivated by above research studies
mentioned in this paper, we have examined the Clairaut anti-invariant submersions from
Lorentzian trans-Sasakian manifolds.

The work is ordered as follows. Section 2 presents basic notion and definition for
Lorentzian trans-Sasakian manifolds. Section 3 includes particular background of
Riemannian submersions. Section 4 presents definition of anti-invariant and Lagrangian
submersions. In section 5, we study anti-invariant submersions and Clairaut anti-invariant
submersion from trans-Sasakian manifolds onto Riemannian manifolds admitting
horizontal Reeb vector field. In section 6, we deal with some axioms of Clairaut
Lagrangian submersion and provide some examples and some of their characteristic
properties.

2. Lorentzian trans-Sasakian manifolds
A (2n þ 1)-dimensional differentiable manifold M is named the Lorentzian Trans-Sasakian
manifold [23] in case it allows (1, 1) tensor field w, the global vector field ζ named Reeb vector
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field or contra-variant vector field, that is, in case η is a dual 1-form of ζ, and the Lorentzian
metric g that satisfies [24].

w2U ¼ U þ ηðUÞζ; ηðζÞ ¼ −1; wζ ¼ 0; (2.1)

gðwU ;wV Þ ¼ gðU ;V Þ þ ηðUÞηðV Þ; (2.2)

where both U and V refer to any vector fields at M. Also, using previous axioms gives

η 8w ¼ 0 and ηðUÞ ¼ gðU ; ζÞ: (2.3)

Here, (w, ζ, η, g) [23] is named Lorentzian structure of M. A Lorentzian trans-Sasakian
manifold M also satisfies [25].

ðDUwÞV ¼ α½gðU ;V Þζ � ηðV ÞU � þ β½gðwU ;VÞζ � ηðVÞwU � (2.4)

for functions α and β andD is Levi-Civita connection with respect to the Lorentzian metric g
at M. Moreover, (M, w, ζ, η, g) is named the Lorentzian trans-Sasakian manifold from type
(α, β); for more details, see ([26]). It can be deduced from (2.1) that

DUζ ¼ −αwU � βðU þ ηðUÞζÞ : (2.5)

Remark 1.

(1) If α 5 0 and β ≠ 0(or β 5 1), therefore the manifold turns into the Lorentzian
β-Kenmotsu manifold (or Lorentzian Kenmotsu manifold) [23].

(2) If α ≠ 0(or α 5 1) and β 5 0, therefore this manifold turns into the Lorentzian
α-Sasakian manifold (or Lorentzian Sasakian manifold) [23].

(3) In case α 5 0 and β, therefore, the manifold turns into the Lorentzian cosymplectic
manifold [23].

3. Riemannian submersions
An essential background of Riemannian submersions is given at this part.

Suppose (M, g) and (N, gN) are Riemannian manifolds, such that dim(M) > dim(N). The
subjective mapping ψ : (M, g) → (N, gN) is named the Riemannian submersion [4] if:

(S1) The rank(ψ ) 5 dim(N).

Therefore, for all q ∈ N, ψ−1ðqÞ ¼ ψ−1
q is the k-dimensional submanifold ofM and is named

the fiber, with

k ¼ dimðMÞ � dimðNÞ:

The vector field at M is named vertical (resp. horizontal) in case it is still as a tangent
(orthogonal) relating to the fibers. The vector field X at M is named basic in case X is
horizontal and ψ -connecting to the vector field X* at N, which means ψ*(Xp)5 X*ψ (p) for any
p ∈ M, where ψ* is derivative or differential map of ψ . V and H define the projections at
vertical distribution kerψ* and horizontal distribution kerψ⊥

*
, in the same order. Usually, a

manifold (M, g) is named the total manifold and (N, gN) is named base manifold of the
submersion ψ : (M, g) → (N, gN).

(S2) ψ* preserves the lengths of horizontal vectors.
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This condition is equivalent to say that the derivative map ψ* of ψ , restricted to kerψ⊥

*
, is the

linear isometry. The geometrical description of Riemannian submersions is represented by
O’Neill’s tensors T and A, determined as:

T E1
F1 ¼ VDVE1

HF1 þHDVE1
VF1; (3.1)

AE1
F1 ¼ VDHE−1HF1 þHDHE1

VF1 (3.2)

for any vector fields E1 and F1 at M, with D is Levi-Civita connection of g. Clearly,
T E1

in addition to AE1
are skew-symmetric operators at tangent bundle of M

reversing vertical and the horizontal distributions. To sum up, tensor fields properties
T as well as A, Suppose V1, W1 are vertical and X1, Y1 are horizontal vector fields at M,
therefore

T V1
W1 ¼ T W1

V1; (3.3)

AX1
Y1 ¼ −AY1

X1 ¼
1

2
V½X1;Y1�: (3.4)

On the other hand, from (3.1) and (3.2), we obtain

DV1
W1 ¼ T V1

W1 þ bDV1
W1; (3.5)

DV1
X1 ¼ T V1

X1 þHDV1
X1; (3.6)

DX1
V1 ¼ AX1

V1 þ VDX1
V1; (3.7)

DX1
Y1 ¼ HDX1

Y1 þAX1
Y1; (3.8)

where bDV1
W1 ¼ VDV1

W1. Moreover, if X1 is basic, then we have HDV1
X1 ¼ AX1

V1. It
appears that T is acting at fibers as second fundamental form, whereas A is acting at
horizontal distribution andmeasuring obstruction to integrability of the distribution. Further
details are given in the paper of O’Neill [4] in addition to this book [2].

At the end, the concept of second fundamental form of the map within Riemannian
manifolds is recalled. Suppose (M, g) and (N, gN) are Riemannianmanifolds and f: (M, g)→ (N,
gN) is the smooth map. Therefore, second fundamental form of f is written as�

Df*
�
ðU ;VÞ ¼ D f

U f*F � f*ðDUVÞ (3.9)

for U, V ∈ Γ(TM), with ∇
f defining the pull-back connection, and D defines the Riemannian

connections of themetrics g and gN. Symmetry iswidely known property of second fundamental
form, and further, f is named totally geodesic [31] in case ðDf*ÞðE;FÞ ¼ 0 for anyU,V∈ Γ(TM)

(as in [19, p. 119]), and f is named the harmonicmap [29] in case traceðDf*Þ ¼ 0 (as in [19, p. 73] ).

4. Anti-invariant Riemannian submersions
We first recall idea of an anti-invariant Riemannian submersionwhere its totalmanifold is the
almost contact metric manifold.

Definition 4.1. ( [18, 27] ) Let M be (2n þ 1)-dimensional almost contact metric manifold
among almost contact metric constructor (w, ζ, η, g) and N is the Riemannian manifold among
Riemannian metric gN. Considering there is Riemannian submersion ψ :M→ N where vertical
distribution kerψ* defines anti-invariant with respect to w, which means, wkerψ* ⊆ kerψ⊥

*
.

Therefore, Riemannian submersion π is named the anti-invariant Riemannian submersion.
Similar submersions are called the anti-invariant submersions.
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Here, horizontal distribution kerψ⊥

*
is given as.

kerψ⊥

*
¼ wkerψ

*
⊕ μ; (4.1)

with μ refers to orthogonal complementary distribution ofwkerψ* at kerψ⊥

*
, and it is invariant

with respect to w.
It is said that the anti-invariant ψ : M → N allows vertical Reeb vector field in case Reeb

vector field ξ is tangent to kerψ* and allows horizontal Reeb vector field in case Reeb vector
field ξ is normal to kerψ*. Clearly, μ includes Reeb vector field ξ if ψ :M→N allows horizontal
Reeb vector field ξ.

Now, we begin to study anti-invariant submersions admitting vertical Reeb vector field
from Lorentzian trans-Sasakian manifolds (M, w, ζ, η, g) of type (α, β) using (nontrivial)
example.

Example 4.2. Suppose M is three-dimensional Euclidean space written as

M ¼ fðx; y; zÞ∈R3j yz≠ 0g:

We consider the Lorentzian trans-Sasakian structure (w, ζ, η, g) at M with α ¼ 1
2
z2 ≠ 0 and

β ¼ 1
z
≠ 0 [23] given by the following:

ζ ¼ v

vz
; η ¼ dz; g ¼

1 0 0
0 1 0
0 0 �1

0
@

1
A

and w is (1, 1) tensor field denoted as w(E1) 5 � E2, w(E2) 5 � E1, w(E3) 5 0.
An orthonormal w-basis of this structure is written as

E1 ¼ z
v

vx
þ y

v

vz

� �
; E2 ¼ z

v

vy
; E3 ¼

v

vz

� �
:

Here, the map ψ : ðM ;w; ξ; η; gÞ→ ðR; g1Þ is introduced as:

ψðx; y; zÞ ¼ xþ yffiffiffi
2

p ;

where g1 is Lorentzian metric on R. Therefore, Jacobian matrix of ψ is given as:

1ffiffiffi
2

p 1ffiffiffi
2

p 0

	 


Since the rank of this matrix equals 1, the map π is the submersion. Using some calculation
leads to

kerψ
*
¼ span U ¼ −

E1 þ E2ffiffiffi
2

p
� �

; V ¼ E3

� �
;

and

kerψ⊥

*
¼ span W ¼ E1 þ E2ffiffiffi

2
p

� �
:

Immediate calculations show that ψ ensures the condition (S2). Thus, ψ is the Riemannian
submersion. Moreover, we got w(U) 5 W. Therefore, ψ is the anti-invariant submersion
admitting vertical Reeb vector field.
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Remark. Throughout this research, as a total manifold of an anti-invariant submersion, let
us consider a Lorentzian trans-Sasakian manifold (M, w, ζ, η, g) of type (α, β) such that both α≠
0 and β ≠ 0.

Notion of Lagrangian submersion is considered the specific case from notion of anti-invariant
submersion. We next recall the definition of the Lagrangian submersion from Lorentzian
trans-Sasakian manifold onto a Riemannian manifold.

Definition 4.3. ( [12] ) Let ψ be the anti-invariant Riemannian submersion from the almost
contact metric manifold (M, w, ξ, η, g) on the Riemannian manifold (N, gN). In case μ5 {0} or
μ 5 span{ξ}, i.e. kerψ⊥

*
¼ wðkerψ*Þ or kerψ⊥

*
¼ wðkerψ*Þ⊕ < ξ >, in the same order,

therefore ψ is called the Lagrangian submersion.

Let ψ is the anti-invariant submersion from the Lorentzian trans-Sasakian manifold (M, w, ζ,
η, g) on the Riemannian manifold (N, gN). For any X1 ∈ kerψ⊥

*
, we write

wX1 ¼ BX1 þ CX1; (4.2)

with BX ∈Γðkerπ*Þ and CX ∈Γðkerπ⊥

*
Þ.

Definition 4.4. ( [7] ) Suppose S is the revolution surface at R3 with rotation axis L. For all
q∈S, where γ(q) represents the distance between q and L. Choosing the geodesic σ : U ⊂R→S
on S, Suppose Θ(l) is an angle between σ(l) and the meridian curve through σ(l), l ∈ U. By the
famous Clairaut’s theorem, we know that for all geodesics σ on S, the product γSinΘ is constant
along σ, which means the independence of l.

Using geometrical analysis of Riemannian submersions, Bishop [7] described the idea of
Clairaut submersion as follows.

Definition 4.5. ( [7] ) The Riemannian submersion ψ : M → N is known as the Clairaut
submersion in case there is positive function γ atM, that is, for all geodesics σ atM, the function
(γ�σ)SinΘ is constant, where, for all l, Θ(l) is an angle within σ^ðlÞ and horizontal space σ(l).

Bishop also provided the necessary and sufficient condition for the Riemannian submersion
turns into the Clairaut submersion as follows.

Theorem 4.6. ( [7] ) Let ψ : M → N be the Riemannian submersion with connected fibers.
Therefore ψ is the Clairaut submersion with γ 5 exp(ω) if and only if all fibers are totally
umbilical and have the mean curvature vector field H ¼ −Dω, where Dω is gradient of the
function ω with respect to g.

5. Anti-invariant submersions admitting horizontal Reeb vector field from
Lorentzian trans-Sasakian manifolds
The anti-invariant submersions are studied in this part from trans-Sasakian manifolds
conceding horizontal Reeb vector field. First, the modern necessary and sufficient condition
for similar submersions turns into a Clairaut submersion, and then a few distinctive outcomes
for this sort of submersions are shown.

We observe from Definition 4.5, the source of the knowledge of a Clairaut submersion
comes from geodesic on its total space. As a result, the necessary and sufficient condition of
the curve on total space explored remains geodesic.

Now, the following results are given:

Theorem 5.1. Let ψ : (M, w, ζ, η, g)→ (N, gN) is the anti-invaraint Riemannian submersion
from Lorentzian trans-Sasakianmanifold of type (α, β) onto the Riemannianmanifold allowing
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horizontal Reeb vector field. In case σ : U ⊂R→M is regular curve and V1(l) in addition to Z1(l)
defines vertical and horizontal components of the tangent vector field σ^ðlÞ ¼ G of σ(l), in the
same order, therefore σ is geodesic if and only if through σ the following equation

VDσ̂BZ1 þAZ1wV1 þ T V1
wV1 þ

�
T V1

þAZ1

�
CZ1 þ αηðZ1ÞV1 þ βηðZ1ÞBZ1 ¼ 0 (5.1)

HDσ̂CZ1 þHDσ̂wV1 þ
�
T V1

þAZ1

�
BZ1 þ α½ηðZ1ÞZ1 þ vζ� (5.2)

þβ½ηðZ1ÞwðV1Þ þ ηðZ1ÞCZ1� ¼ 0:

hold, where
ffiffi
s

p
is constant speed of σ.

Proof. In view of Eqn (2.4), we find�
Dσ̂w

�
σ^ ¼ wDσ̂ σ

^ þ α
h
gðσ^; σ^Þζ � ηðσ^Þσ^

i
þ β

h
g
�
wσ^; σ^

�
ζ � ηðσ^Þwσ^

i
(5.3)

Since σ^ ¼ V1 þ Z1, gðσ^; σ^Þ ¼ s, and η(V1) 5 0, we can note

DV1þZ1wðV1 þ Z1Þ ¼ wDσ̂ σ
^ þ α

h
vζ � ηðV1Þσ^ � ηðZ1Þσ^

i
� β½ηðZ1ÞðwV1 þ wZ1Þ�: (5.4)

Now, from a straight forward calculation, we find

DV1
wV1 þDV1

wZ1 þDZ1wV1 þDZ1wZ1 ¼ wDσ̂ σ
^ þ α½vζ � ηðZ1ÞV1 � ηðZ1ÞZ1� (5.5)

�β½ηðZ1ÞðwV1 þ wZ1Þ�:

In fact η (V1) 5 0. By using Eqns (3.3), (3.4), (3.5) and (3.6), we find

H
�
Dσ̂wV1 þDσ̂CZ1

�
þ
�
T V1

þAZ1

��
BZ1 þ CZ1

�
þ VDσ̂BZ1 þAZ1wV1 þ T V1

wV1 (5.6)

¼ wDσ̂ σ
^ þ α½vζ � ηðZ1ÞV1 � ηðZ1ÞZ1� � β½ηðZ1ÞBZ1 þ CZ1 þ wV1�:

Now capturing the vertical and horizontal components from Eqn (5.6), we find the following
equations:

VDσ̂BZ1 þAZ1wV1 þ T V1
wV1 þ

�
T V1

þAZ1

�
CZ1 ¼ VwDσ̂ σ

^ � αηðZ1ÞV1 � βηðZ1ÞBZ1
(5.7)

and

HDσ̂CZ1 þHDσ̂wV1 þ
�
T V1

þAZ1

�
BZ1 (5.8)

¼ HwDσ̂ σ
^ � αvζ � αηðZ1ÞZ1 � βηðZ1ÞwV1 � βηðZ1ÞCZ1:

From equations (5.7) and (5.8), it is simply observed that σ is geodesic if and only if (5.1) and
(5.2) hold. ,

Using Theorem (5.1) in addition to Remark (1), the following corollaries are obtained.

Corollary 5.2. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the anti-invaraint Riemannian
submersion from Lorentzian α-Sasakian manifold of type (α, 0) onto the Riemannian manifold
allowing horizontal Reeb vector field. In case σ : U ⊂R→M is regular curve and V1(l) in
addition to Z1(l) defines vertical and horizontal components of tangent vector field σ^ðlÞ ¼ G of
σ(l), in the same order, therefore σ is geodesic if and only if through σ the following equations

VDσ̂BZ1 þAZ1wV1 þ T V1
wV1 þ

�
T V1

þAZ1

�
CZ1 þ αηðZ1ÞV1 ¼ 0 (5.9)
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HDσ̂CZ1 þHDσ̂wV1 þ
�
T V1

þAZ1

�
BZ1 þ α½ηðZ1ÞZ1 þ vζ� ¼ 0: (5.10)

maintain, where
ffiffi
s

p
is constant speed of σ.

Corollary 5.3. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the anti-invariant Riemannian
submersion from Lorentzian β-Kenmotsu manifold of type (0, β) onto the Riemannian
manifold admitting horizontal Reeb vector field. In case σ : U ⊂R→M is the regular curve
and V1(l) in addition to Z1(l) defines vertical and horizontal components of tangent vector field

σ^ðlÞ ¼ Gof σ(l), in the same order, therefore σ is geodesic if and only if through σ the following
equation

VDσ̂BZ1 þAZ1wV1 þ T V1
wV1 þ

�
T V1

þAZ1

�
CZ1 þ βηðZ1ÞBZ1 ¼ 0 (5.11)

HDσ̂CZ1 þHDσ̂wV1 þ
�
T V1

þAZ1

�
BZ1 þ β½ηðZ1ÞwðV1Þ þ ηðZ1ÞCZ1� ¼ 0: (5.12)

hold, where
ffiffi
s

p
is constant speed of σ.

Corollary 5.4. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is an anti-invaraint Riemannian
submersion from Lorentzian cosymplectic manifold of type (0, 0) onto the Riemannian
manifold allowing horizontal Reeb vector field. If σ : U ⊂R→M is the regular curve and V1(l)
in addition to Z1(l) defines vertical and horizontal components of the tangent vector field

σ^ðlÞ ¼ Gof σ(l), in the same order, therefore σ is geodesic if and only if through σ the following
equation

VDσ̂BZ1 þAZ1wV1 þ T V1
wV1 þ

�
T V1

þAZ1

�
CZ1 ¼ 0 (5.13)

HDσ̂CZ1 þHDσ̂wV1 þ
�
T V1

þAZ1

�
BZ1 ¼ 0: (5.14)

hold, where
ffiffi
s

p
is constant speed of σ.

Theorem 5.5. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the anti-invariant Riemannian
submersion from Lorentzian trans-Sasakian manifold of type (α, β) onto the Riemannian
manifold allowing horizontal Reeb vector field. Therefore ψ is Clairaut submersion with
γ 5 exp(ω) if and only if through σ

½gðDω; Z1Þ � βηðZ1Þ� V1j j2 ¼ g
�
αηðZ1ÞZ1 þHDσ̂CZ1 þ

�
T V1

þAZ1

�
BZ1;wV1

�
(5.15)

holds, where V1(l) and Z1(l) are vertical and horizontal components of the tangent vector field σ^ðlÞ
of the geodesic σ(l) at M, in the same order.

Proof. Consider σ(l) as the geodesic having the speed
ffiffi
s

p
at M, therefore,

s ¼ σ^ðlÞ
 2: (5.16)

Now, from Eqn (5.16), we achieve that

gðV1ðlÞ;V1ðlÞÞ ¼ vSin2ΘðlÞ and gðZ1ðlÞ; Z1ðlÞÞ ¼ vCos2ΘðlÞ; (5.17)

where Θ(l) is the angle within σ^ðlÞ and horizontal space at σ(l). Now, by the derivative of first
part of Eqn (5.17), we find

d

dl
gðV1ðlÞ;V1ðlÞÞ ¼ 2g

�
Dσ̂ ðlÞV1ðlÞ;V1ðlÞ

�
¼ 2vSinΘCosΘ

dΘ
dl

ðlÞ; (5.18)

Using the Lorentzian trans-Sasakian structure, we find

g
�
wDσ̂ ðlÞV1ðlÞ;wV1ðlÞ

�
¼ vSinΘCosΘ

dΘ
dl

ðlÞ; (5.19)
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Once again, from Eqn (2.4), we have

wDσ̂V1 ¼ Dσ̂wV1 � αg
�
α^;V1

�
ζ � βg

�
wσ^;V1

�
ζ: (5.20)

Hence,

g
�
wDσ̂V1;wV1

�
¼ g

�
HwDσ̂V1;wV1

�
; (5.21)

since η(V) 5 0, g(wV1, ζ) 5 0 and using the fact that wV1 is horizontal.
Thus, from Eqn (5.19), we obtain

g
�
HwDσ̂V1;wV1

�
¼ vSinΘCosΘ

dΘ
dl

ðlÞ: (5.22)

From Eqn (5.2), we find along σ,

−g
�
HDσ̂CZ1 þ

�
T V1

þAZ1

�
BZ1 þ αηðZ1ÞZ1 þ βηðZ1ÞwðV1Þ;wV1

�
¼ vSinΘCosΘ

dΘ
dl

;

(5.23)

since g(wV1, ζ) 5 0.
On contrary, ψ is Clairaut submersion with γ 5 exp(ω) if and only if

d

dl
½expðωÞSinΘ� ¼ 0 ↔ expðωÞ dω

dl
SinΘþ CosΘ

dΘ
dl

	 

¼ 0: (5.24)

Now, taking the product of Eqn (5.24) with nonzero factor vSinΘ, we find
dω
dl

vSin2Θþ vSinΘCosΘ
dΘ
dl

¼ 0: (5.25)

Using equations (5.23) and (5.24), we obtain

dω
dl

½σðlÞ� V1j j2 ¼ g
�
αηðZ1ÞZ1 þHDσ̂CZ1 þ

�
T V1

þAZ1

�
BZ1;wV1

�
þ βηðZ1Þ V1j j2: (5.26)

In fact dω
dl
½σðlÞ� ¼ σ^ ½ω� ¼ gðDω; σ^Þ ¼ gðDω; Z1Þ, the expression (5.29) follows from (5.26).,

Now, the following corollaries are given:

Corollary 5.6. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the anti-invariant Riemannian
submersion from Lorentzian α-Sasakian manifold of type (α, 0) onto the Riemannian manifold
allowing horizontal Reeb vector field. Therefore ψ is Clairaut submersion with γ5 exp(ω) if and
only if through σ

½gðDω; Z1Þ� V1j j2 ¼ g
�
αηðZ1ÞZ1 þHDσ̂CZ1 þ

�
T V1

þAZ1

�
BZ1;wV1

�
(5.27)

holds, where V1(l) and Z1(l) are vertical and horizontal components of the tangent vector field

σ^ðlÞ of the geodesic σ(l) at M, in the same order.

Corollary 5.7. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the anti-invariant Riemannian
submersion fromLorentzian β-Kenmotsumanifold of type (0, β) onto the Riemannianmanifold
allowing horizontal Reeb vector field. Therefore ψ is Clairaut submersion with γ 5 exp(ω) if
and only if through σ

½gðDω; Z1Þ � βηðZ1Þ� V1j j2 ¼ g
�
HDσ̂CZ1 þ

�
T V1

þAZ1

�
BZ1;wV1

�
(5.28)
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holds, where V1(l) and Z1(l) are vertical and horizontal components of tangent vector field σ^ðlÞ
of the geodesic σ(l) at M, in the same order.

Corollary 5.8. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the anti-invariant Riemannian
submersion fromLorentzian cosymplecticmanifold of type (α, β) onto the Riemannianmanifold
admitting horizontal Reeb vector field. Therefore ψ is Clairaut submersion with γ 5 exp(ω) if
and only if along σ

gðDω; Z1Þ V1j j2 ¼ g
�
HDσ̂CZ1 þ

�
T V1

þAZ1

�
BZ1;wV1

�
(5.29)

holds, where V1(l) and Z1(l) are vertical and horizontal components of the tangent vector field

σ^ðlÞ of the geodesic σ(l) at M, in the same order.

Now, from Eqn (5.29), we also obtain the following conclusion.

Corollary 5.9. Suppose ψ is the Clairaut anti-invariant submersion from Lorentzian trans-
Sasakian manifold (M, w, ζ, η, g) of type (α, β) on the Riemannian manifold (N, gN). Therefore,

gðDω; ζÞ ¼ β: (5.30)

Proof. Since ζ is a horizontal Reeb vector field. Setting Z1 5 ζ and using the fact
dω
dl
½σðlÞ� ¼ σ^½ω� ¼ gðDω; σ^Þ ¼ gðDω; Z1Þ, the expression (5.26) gives (5.30). ,

Corollary 5.10. Suppose ψ is the Clairaut anti-invariant submersion from Lorentzian
α-Sasakian (or Lorentzian Sasakian) manifold (M, w, ζ, η, g) of type (α, 0) onto the Riemannian
manifold (N, gN). Therefore,

gðDω; ζÞ ¼ 0: (5.31)

Proof. Since for Lorentzian α-Sasakian (or Lorentzian Sasakian) β 5 0, and using similar
fact as we have used in proof of Corollary 5.9 together, we find the desired result. ,

Theorem 5.11. Suppose ψ : (M, w, ζ, η, g)→ (N, gN) is a Clairaut anti-invariant submersion
from Lorentzian trans-Sasakian manifold of type (α, β) onto a Riemannianmanifold admitting
horizontal Reeb vector field with γ 5 exp(ω). Then we have

AwV1
wG1 ¼ G1ðωÞV1 (5.32)

for G1 ∈ Γ(μ) and V1 ∈ (kerψ*) such that wV1 is basic vector.
Proof. Suppose ψ is the Clairaut anti-invariant submersion allowing horizontal Reeb vector
field from a Lorentzian trans-Sasakianmanifold onto a Riemannianmanifoldwith γ5 exp(ω).
Now, by consequences of Theorem (4.6), we find

T U1
G1 ¼ −gðU1;G1ÞDω (5.33)

forU1,G1∈ (kerψ*). If we spread Eqn (5.33) with wV1,V1∈ (kerψ*) such that wV1 is basic and
using Eqn (3.3), we find

g
�
DU1

G1;wV1

�
¼ −gðU1;G1ÞgðDω;wV1Þ: (5.34)

g
�
DU1

wV1;G1

�
¼ gðU1;G1ÞgðDω;wV1Þ: (5.35)

In fact g(G1, wV1) 5 0. Through Eqn (2.4), we infer

g
�
wDU1

V1;G1

�
¼ −gðU1;G1ÞgðDω;wV1Þ: (5.36)
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Adopting the Lorentzian trans-Sasakian structure, we notice

−g
�
DU1

V1;wG1

�
¼ gðU1;G1ÞgðDω;wV1Þ: (5.37)

Once again, adopting (3.3), we turn up

−g
�
T U1

V1;wG1

�
¼ gðU1;G1ÞgðDω;wV1Þ: (5.38)

Henceforth, through Eqn (5.33), we attain

gðU1;V1ÞgðDω;wG1Þ ¼ gðU1;G1ÞgðDω;wV1Þ: (5.39)

Putting U1 5 V1 and shifting U1 with by G1 in Eqn (5.39), we acquire

G1j j2gðDω;wG1Þ ¼ gðU1;G1ÞgðDω;wV1Þ: (5.40)

Adopting Eqn (5.39) with setting V1 5 U1, we have

gðDω;wG1Þ ¼
g2ðU1;G1Þ
U1j j2 G1j j2

gðDω;wV1Þ: (5.41)

On the contrary, involving Eqn (2.4), we turn up

g
�
DG1

wV1;wW1

�
¼ g

�
wDG1

;wW1

�
: (5.42)

for W1 ∈ Γ(μ) and W1 ≠ ζ. Using Eqn (2.5), we get

g
�
DG1

wV1;wW1

�
¼ g

�
DG1

;W1

�
: (5.43)

Adopting equations (3.3) and (5.33), we get

g
�
DG1

wV1;wW1

�
¼ gðV1;wG1ÞgðDω;W1Þ: (5.44)

After all wV1 is basic vector and using the case that HDG1
wV1 ¼ AwV1

G1, we turn up

g
�
DG1

wV1;wW1

�
¼ g

�
AwG1

V1;wW1

�
: (5.45)

Involving again, Eqns (5.44), (5.45) and the skew-symmetric nature of A, we turn up

gðDω;W1ÞgðV1;wG1Þ ¼ g
�
AwG1

V1;wW1

�
: (5.46)

By reason of AwV1
wW1, G1 and V1 are vertical and ω is horizontal, we turn up

expression (5.32).
Particularly ifDω∈wðkerψ*Þ, then from (5.41) in proof of Theorem 5.11 and the equality

case of Schwarz inequality, we have have that ,

Corollary 5.12. Suppose ψ : (M, w, ζ, η, g)→ (N, gN) is the Clairaut Lagrangian submersion
allowing horizontal Reeb vector field from Lorentzian trans-Sasakian manifold of type (α, β)
onto a Riemannian manifold with γ 5 exp(ω). If Dω∈wðkerψ*Þ, then either ω is constant on
w(kerψ*) or fiber of ψ is one-dimensional.

6. Clairaut Lagrangian submersions
This section deals with some results of Clairaut Lagrangian submersions conceding with
horizontal Reeb vector field. Moreover, when the function ω is constant, Dω ¼ 0. Thus by
Theorem 4.6 and Corollary 5.12, we have the following results.
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Corollary 6.1. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is a Clairaut anti-invariant submersion
allowing horizontal Reeb vector field from Lorentzian trans-Sasakian manifold of type (α, β) on
the Riemannian manifold with γ 5 exp(ω) and dim(kerψ*) > 1, then fibers of ψ are totally
geodesic if and only if

AwV1
wZ1 ¼ 0

for V1 ∈ (kerψ*), wV1 is basic and Z1 ∈ μ.

Moreover, in case the submersion ψ at Theorem (5.11) is Lagrangian submersion, therefore
AwV1

wZ1 is always vanish, because μ ¼ 0f g or μ ¼ span ζf g. Also from Corollaries 5.9 and
5.10, we have Dω∈wðkerψ*Þ. Hence, the following consequences of Theorem (5.11) and
Corollary 5.12 are given.

Theorem 6.2. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the Clairaut Lagrangian submersion
allowing horizontal Reeb vector field from Lorentzian trans-Sasakian manifold of type (α, β)
onto a Riemannian manifold with γ5 exp(ω). Therefore, fibers of ψ can be one-dimensional or
totally geodesic.

Corollary 6.3. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the Clairaut Lagrangian submersion
admitting horizontal Reeb vector field fromLorentzian α-Sasakianmanifold of type (α, 0) onto a
Riemannian manifold with γ 5 exp(ω). Therefore fibers of ψ can be one-dimensional or totally
geodesic.

Corollary 6.4. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the Clairaut Lagrangian submersion
allowing horizontal Reeb vector field from Lorentzian β-Kenmotsumanifold of type (0, β) onto a
Riemannian manifold with γ 5 exp(ω). Therefore fibers of ψ can be one-dimensional or totally
geodesic.

Corollary 6.5. Suppose ψ : (M, w, ζ, η, g) → (N, gN) is the Clairaut Lagrangian submersion
allowing horizontal Reeb vector field from Lorentzian cosymplectic manifold of type (α, β) onto a
Riemannian manifold with γ 5 exp(ω). Therefore either fibers of ψ can be one-dimensional or
totally geodesic.

7. Applications
The following result is Theorem 2 stated by Gauchman in [28].

Theorem 7.1. Suppose ψ ; (M, g) → (N, gN) is the Clairaut submersion with γ, where M is
complete, connected and simply connected, and N is simply connected. Assume that any vertical
leaf of ψ has no nontrivial Killing vector field. Suppose p is the point of M. Therefore M is
isometric to the warped product N 3fB, where B is the vertical leaf through p and f : N →R
is determined using this equation γ 5 f�ψ .

In [23] De and Srakar prove that trans-Sasakian structures are complete and connected.
Indeed, Riemannian manifold also preserved the characteristic of simple connectedness.
Therefore, the following results are obtained.

Theorem 7.2. ψ : (M, w, ζ, η, g, α, β)→ (N, gN) is a Clairaut Lagrangian submersion with γ,
where (M, w, ζ, η, g) is complete, connected, and simply connected Lorentzian trans-Sasakian
manifold, and Riemannian manifold (N, gN) is simply connected. Assume that any vertical leaf
of ψ has no nontrivial Killing vector field. Let p be a point of (M, w, ζ, η, g). Then Lorentzian
trans-Sasakian manifold of (α, β) type is isometric to a warped product N 3fB, where B is the
vertical leaf through p and f : N →R is defined by the equation γ 5 f�ψ .

Remark. For particular values of α and β easily we can turn up the similar results like
Theorem (7.2) for α-Lorentzian Sasakian manifold (Lorentzian Sasakian manifold),
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β-Lorentzian Kenmotsu manifold (Lorentzian Kenmotsu manifold), and Lorentzian
cosymplectic manifold.

Now, we describe some examples of Clairaut submersion from Lorentzian trans-Sasakian
manifolds (M, w, ξ, η, g) of type (α, β).

Example 7.3. Suppose M is three-dimensional Euclidean space written as

M ¼ fðx; y; zÞ∈R3 j yz≠ 0g:

We consider the Lorentzian trans-Sasakian structure (w, ξ, η, g, α, β) atMwith α5 0 and β5 1
[23] given by the following:

ζ ¼ v

vz
; η ¼ dz; g ¼

1 0 0
0 1 0
0 0 �1

0
@

1
A

and w is the (1, 1) tensor field determined as

w(E1)5� E2, w(E2)5� E1, w(E3)5 0. An orthonormal w-basis of this constructor is written
as

E1 ¼ z
v

vx
; E2 ¼ z

v

vy
; E3 ¼ z

v

vz

� �
:

Here, the map ψ : ðM ;w; ξ; η; g; α; βÞ→ ðR; g1Þ is written as:

ψðx; y; zÞ ¼ xþ yffiffiffi
2

p ; z

� �
;

where g1 is the usual metric at R. Now, by a straightforward computation, we turn up

kerψ
*
¼ span U ¼ −

E1 þ E2ffiffiffi
2

p
� �� �

;

and

kerψ⊥

*
¼ span V ¼ E1 þ E2ffiffiffi

2
p ; W ¼ E3

� �
:

Easily, we observe that ψ is the Riemannian submersion. Moreover, we have w(U) 5 V.
Therefore, ψ is the anti-invariant submersion allowing horizontal Reeb vector field.
Particularly, ψ is Lagrangian submersion. Furthermore, after all the fibers of ψ are one-
dimensional, then they are simply totally umbilical. At this point, it is proved that fibers are

not considered totally geodesic, and it is found that the function of R3 obeying
T U1

U1 ¼ −Dω. Therefore, after some sort of calculation, we turn up

DU1
U1 ¼

1

2

�
DE1

E1 �DE1
E2 �DE2

E1 �DE2
E2

�
: (7.1)

Adopting the Lorentzian trans-Sasakian structure results in

DE1
E1 ¼ DE2

E2 ¼ −E3 and DE1
E2 ¼ −DE2

E1 ¼ 0

DU1
U1 ¼ −z

v

vz
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invariant

submersions



Using (3.5), we turn up

T U1
U1 ¼ −z

v

vz
:

For any function ω of ðR3;w; ζ; η; gÞ, the gradient of ω with respect to the metric g is

Dω ¼
X3

i;j

vω
vxi

v

vxj
¼ vω

vx

v

vx
þ vω

vy

v

vy
� vω

vz

v

vz

	 

:

Here, at this point, it is clear to observe that ω ¼ −z2

2
for the function of z and

T U1
U1 ¼ −Dω ¼ −ζ. Also for any U2 ∈ (kerψ*), we have

T U2
U2 ¼ − U2j j2Dω:

Henceforth, using Theorem (5.26), the submersion ψ is Clairaut submersion.

Example 7.4. Suppose M is three-dimensional Euclidean space written as

M ¼ fðx; y; zÞ∈R3j yz≠ 0
�

We consider the Lorentzian trans-Sasakian structure (w, ξ, η, g, α, β) at M with α 5 � 1 and
β 5 0 given by the following:

ζ ¼ v

vz
; η ¼ dz; g ¼

1 0 0
0 1 0
0 0 �1

0
@

1
A

and w is (1, 1) tensor field determined as

w(E1) 5 � E1, w(E2) 5 � E2, w(E3) 5 0. An orthonormal w-basis is written as

E1 ¼ exþz v

vx
; E2 ¼ eyþz v

vy
; E3 ¼

v

vz

� �
:

Moreover, we have

DEi
E3 ¼ −Ei; ∀ i ¼ 1; 2; DEi

Ei ¼ −2E3; ∀ i ¼ 1; 2 DEi
Ej ¼ 0; i≠ j and i ¼ j ¼ 3:

Here, the map ψ : ðM ;w; ζ; η; g; α; βÞ→ ðR; g1Þ is defined by the following:

ψðx; y; zÞ ¼ xþ yffiffiffi
2

p ; z

� �
;

where g1 is usual metric at R. Now, by a straightforward computation, we turn up

kerψ
*
¼ span U ¼ −

E1 þ E2ffiffiffi
2

p
� �� �

;

and

kerψ⊥

*
¼ span V ¼ E1 þ E2ffiffiffi

2
p ; W ¼ E3

� �
:

Easily, we observe that ψ is the Riemannian submersion. Moreover, we have w(U) 5 V.
Therefore, ψ is the anti-invariant submersion admitting horizontal Reeb vector field.
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Particularly, ψ is Lagrangian submersion. Furthermore, after all the fibers of ψ are one-
dimensional, then they are simply totally umbilical. At this point, it is proved that fibers

are not totally geodesic, and it is found that the function of R3 obeying T U1
U1 ¼ −Dω.

Therefore, after some sort of calculation, we turn up

DU1
U1 ¼

1

2

�
DE1

E1 �DE1
E2 �DE2

E1 �DE2
E2

�
: (7.2)

Adopting the Lorentzian trans-Sasakian structure, we observe that

DU1
U1 ¼ 2

v

vz

Using (3.5), we turn up

T U1
U1 ¼ 2

v

vz
:

For all functions ω at ðR3;w; ξ; η; gÞ, the gradient of ω with respect to the metric g is

Dω ¼
X3

i;j

vω
vxi

v

vxj
¼ vω

vx

v

vx
þ vω

vy

v

vy
� vω

vz

v

vz

	 

:

Now, at this point, it is clear to observe that ω 5 � 2z for the function of z and
T U1

U1 ¼ −Dω ¼ −2ξ. Also for any U2 ∈ (kerψ*), we have

T U2
U2 ¼ − U2j j2Dω:

Henceforth, by Theorem (5.26), the submersion ψ is Clairaut submersion.
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