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Abstract

Purpose – In this work the author gathers several methods and techniques to construct systematically
Stieltjes classes for densities defined on Rþ.
Design/methodology/approach – The author uses complex integration to obtain integrable functions with
vanishingmoments sequence, and then the author considers some operators defined on the vanishingmoments
subspace.
Findings –The author gather several methods and techniques to construct systematically Stieltjes classes for
densities defined onRþ. The author constructs explicitly Stieltjes classeswith center at well-known probability
densities. The author gives a lot of examples, including old cases and new ones.
Originality/value – The author computes the Hilbert transform of powers of jln xj to construct Stieltjes
classes by using a recent result connecting the Krein condition and the Hilbert transform.
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1. Introduction
Consider the subspace M of all functions f ∈L1ðRþÞwith finite moment sequence, i.e.Z ∞

0

xnjf ðxÞjdx < ∞ for all n∈N0 ¼ f0; 1; . . .g:

The vanishing moments subspace M0 is given as follows

M0 ¼ f ∈M :

Z ∞

0

xnf ðxÞdx ¼ 0 for all n∈N0

� �
:

We also consider the subspace �M of all functions f ∈L1ðRþÞ with strong finite moment
sequence, i.e. Z ∞

0

xnjf ðxÞjdx < ∞ for all n∈Z ¼ f0;±1;±2; . . .g;

and the corresponding strong vanishing moments subspace �M0.
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First, we introduce a method to get functions inM0 or �M0: assume that g is an analytic
function on a region containing the sector

Sα ¼ fz∈C* : 0≤ arg z≤ παg; 0 < α < 1; C* ¼ Cn f0g:
We use complex integration to show that

I gðeiπαxαÞ� �
∈M0 or �M0; (1)

provided that g satisfies suitable conditions on the boundary vSα of Sα. As usual, Rz;Iz
denote the real and imaginary parts of z∈C.

Then we introduce some operators mapping the subspaceM0 into itself. For instance, we
prove that M0 is invariant under the operator

g↦ μ * g;

provided that μ is a positive boundedmeasure on ðRþ;BþÞwith finite moments sequence, see
(18). Here μ * g is the convolution of the measure μ and the function g on Rþ given by

μ * gðxÞ ¼
Z x

0

gðx� sÞdμðsÞ; x > 0:

Suppose now that f is a probability density function (we use further just density) of a random
variable X such that all moments are finite, i.e., mkdE½Xk� ¼ R∞

0 xkf ðxÞdx < ∞ for all
k∈N0, hence m0 5 1. This means that f ∈M. It is well-known that the moment sequence
fmkg∞k¼1 either determines X and f uniquely, and we say that X, and also f, is M-determinate,
or that f is M-indeterminate. In the latter case there are infinitely many continuous and
infinitely many discrete distributions all sharing the same moments as X ∼ f. This is a
fundamental qualitative result, see [1, 2].

In the survey [3] the author revisited recent developments on the checkable moment-(in)
determinacy criteria including Cram�er’s condition, Carleman’s condition, Hardy’s condition,
Krein’s condition and the growth rate of moments. In this survey the author analyzes
Hamburger and Stieltjes cases.

In this work we only focus in the Stieltjes case, i.e we consider distributions supported on
Rþ. Recall that in [4] was introduced the concept of Stieltjes class for M-indeterminate
absolutely continuous distribution function. Let f be a density inM. Assume that there exists
a function h∈L∞ðRþÞ such that khk∞ 5 1, fh∈M0 and fh is not identically zero. Then the
Stieltjes class S(f, h) with center at f and perturbation h is given by

Sðf ; hÞ ¼ ff ðxÞ½1þ εhðxÞ� : x∈Rþ; ε∈ ½−1; 1�g:
Clearly, S(f, h) is a family of densities all having the same moment sequence as f.

If X ∼ f is M-determinate, then the perturbation h5 0, and the Stieltjes class consists of a
single element, the center f.

The main aim of this work is to find perturbations for Stieltjes classes with center at a
density f> 0. To do this, the basic idea is take a function g ∈M0 such that h5 g/f is bounded
onRþ, therefore hwill be a perturbation (up to scaling by a constant) for a Stieltjes class with
center at f. Thus, in this paper all the densities f are M-indeterminate.

When X ∼ f with a density f in �M, we make the obvious changes to define the strong
Stieltjes class with center at f.

In [5, Theorem 1.2] the author proved that if f is a density inM satisfying the Krein conditionZ ∞

0

�ln f ðx2Þ
1þ x2

dx < ∞; (2)
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then Sðf ; sinðHe ln f ÞÞ is a Stieltjes class, whereHe ln f is the Hilbert transform of u 5 ln f:

HeuðtÞ ¼ 2t1=2

π
P

Z ∞

0

uðx2Þ
t � x2

dx; t > 0: (3)

In particular, here we compute Heðjln xjmÞ, m∈N, to obtain new Stieltjes classes
corresponding to M-indeterminate generalized log-normal random variables.

In order to test our approach we apply the developed methods to the generalized gamma
(GG) distribution (see Examples 4, 8, 11 and 12), powers of the generalized inverse gaussian
(GIG) distribution (see Examples 3, 14 and 16), powers of the half-logistic distribution (see
Example 7) and to the generalized lognormal (GLN) distribution (see Examples 5, 6, 19
and 21).

This work is organized as follows. In Section 2 we give the precise conditions on g to prove
(1), and we apply this result to get functions inM0. In Section 3 we introduce some operators
defined on M0 and we use the functions obtained in Section 2 to get new perturbations in
Examples 5, 6, 8, 11, 19 and 21, hence we give new Stieltjes classes. In the last section we
compute Heðjln xjmÞ, m∈N ¼ f1; 2; . . .g.

2. Functions with vanishing moments
In this section we use complex integration to obtain functions in M0 or �M0. We follow the
technique introduced in [6], also in [7], where a similar result appears. In fact, in [6] the author
asks the condition g(x) ≥ A exp(�axα) for some A > 0, a > 0 and some α ∈ (0, 1/2), which is
replaced with our integrability conditions (4), (5) and (6) below.

Let S ⊂C, then hol(S) denotes the space of analytic functions on a region containing S.

Lemma 1. Let 0 < α < 1, γ ∈C. Suppose that g ∈ hol(Sα) satisfies the following conditions

t−1þRγjgðtÞj∈L1ðRþÞ; (4)

lim
A→∞

ARγ

Z πα

0

jgðAeitÞjdt ¼ 0; (5)

lim
ε→0þ

εRγ

Z πα

0

jgðεeitÞjdt ¼ 0; (6)

Then Z ∞

0

tγ−1gðteiπαÞdt ¼ e−iπαγ
Z ∞

0

tγ−1gðtÞdt: (7)

Proof. We pick 0 < « < A < ∞, Cauchy’s theorem implies thatI
Cε;A

zγ−1gðzÞdz ¼ 0;

where the contour C«,A consists of the real axis from « toA, the arc of the circle z5Aeit from
t5 0 to t5 πα, the straight line from Aeiπα to «eiπα and the arc of the circle z5 «ei(πα�t) from
t 5 0 to t 5 πα. Thus,
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0 ¼ I1 þ I2 þ I3 þ I4 ¼
Z A

ε
tγ−1gðtÞdt þ i

Z πα

0

ðAeitÞγgðAeitÞdt

� eiπα
Z −ε

−A

ð−teiπαÞγ−1gð−teiπαÞdt � i

Z πα

0

ðεeiðπα�tÞÞγgðεeiðπα−tÞÞdt:

Since jzλj ¼ jzjRλ expð−arg zIλÞ for all λ∈C, z∈C*, conditions (5) and (6) imply that
limA→∞I2 ¼ limε→0þ I4 ¼ 0. Therefore from condition (4) we get

lim
ε→0þ;A→∞

ðI1 þ I3Þ ¼ 0; ,

and the result follows.

Theorem 2. Let 0 < α < 1. Suppose that g ∈ hol(Sα) satisfies conditions (5), (6) with γ 5
(n þ 1)/α, gðxÞ∈R for all x > 0 and

xnjgðxαÞj∈L1ðRþÞ for all n∈N0 or n∈Z; (8)

then relation (1) holds.

Proof. By setting γ 5 (n þ 1)/α for all n∈N0 or n∈Z, t 5 xα, t�1dt 5 αx�1dx in (7) and
taking the imaginary part, the result follows. ,

We recall an inequality that will be useful to get our estimates: since ex ≥ x for all x > 0 we
have

e−x ≤ ssx−s for all x; s > 0: (9)

Throughout this work the constant K will be a normalizing constant to produce a density
function in each case.

Example 3. For all b1, b2 > 0, 0 < c1, c2 < 1/2 and a∈R we have

xa−1 sin πaþ b2 tanðπc2Þx−c2 � b1 tanðπc1Þxc1ð Þexpð−b1xc1 � b2x
−c2Þ∈Ms

0: (10)

Indeed, we just apply Theorem 2with g(z)5 zβ exp(�ρ1z
λ� ρ2z

�1) for any β∈R, λ, ρ1, ρ2 > 0.

Clearly g is an analytic function on fz∈C* : jargzj < πg.
From (9) we have that g satisfies condition (8) for all 0 < α< 1, n∈Z. Assume that 0 < α, αλ

< 1/2, then the inequalities

0 < cosðπαÞ≤ cos t ≤ 1; 0 < cosðπαλÞ≤ cosðλtÞ≤ 1 for all t ∈ ½0; πα�; (11)

together the inequality in (9) imply that

lim
A→∞

Aðnþ1Þ=αþβ

Z πα

0

exp −Aλρ1 cosðλtÞ � A−1ρ2 cos t
� �

dt ¼ 0 for all n∈Z;

and, by making A 5 1/«, the last case implies

lim
ε→0þ

εðnþ1Þ=αþβ

Z πα

0

exp −ελρ1 cosðλtÞ � ε−1ρ2 cos t
� �

dt ¼ 0 for all n∈Z:

From Theorem 2 we have

xαβI expðiπαβ � ρ1e
iπαλxαλ � ρ2e

−iπαx−αÞ� �
∈Ms

0;
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and the result follows by setting α5 c2, λ5 c1/c2, β5 (a� 1)/c2, ρi5 bi/cos(πci), i5 1, 2. Thus
hðxÞ ¼ sin πaþ b2 tanðπc2Þx−c2 − b1 tanðπc1Þxc1ð Þ is a perturbation for the strong Stieltjes
class with center at f ðxÞ ¼ Kxa−1 expð−b1xc1 − b2x

−c2Þ, x > 0. This Stieltjes class was also
founded in [6].

Example 4. For all 0 < α < 1/2, a, b > 0 we have

xa−1 sinðπa� b tanðπαÞxαÞexpð−bxαÞ∈M0: (12)

Indeed, consider g(z)5 zβ exp(�ρz) for any β >� 1/α, ρ> 0. From (9) we have that g satisfies
condition (8) for all n∈N0. The inequality in (11) implies condition (5) holds for all μ5 (nþ 1)/
α, n∈N0. Since

lim
ε→0þ

εðnþ1Þ=αþβ

Z πα

0

expð−ερ cos tÞdt ≤ πα lim
ε→0þ

εðnþ1Þ=αþβ ¼ 0 for all n∈N0;

Theorem 2 implies that

xαβI eiπαβ expð−ρeiπαxαÞ� �
∈M0;

and the result follows by setting β 5 (a � 1)/α and ρ 5 b/cos(πα). Thus h(x) 5 sin(πa �
b tan(πα)xα) is a perturbation for the Stieltjes class with center at f(x) 5 Kxa�1 exp(�bxα),
x > 0. This Stieltjes class was also founded in [7, Example 3.2].

Recall that b$c is the floor function and ⌈$⌉ is the ceiling function. For x; y∈R,m∈N, we
have

ðxþ iyÞm ¼
Xbm=2c

j¼0

m

2j

� �
ð−1Þjxm−2jy2j þ i

X⌈m=2⌉−1

j¼0

m

2jþ 1

� �
ð−1Þjxm−2j−1y2jþ1: (13)

Example 5. For all 0 < α < 1/2, b > 0, m∈N, we have

e−bx
αðθmðxÞcosðπαÞ−ψmðxÞsinðπαÞÞ sin bxαðψmðxÞcosðπαÞ þ θmðxÞsinðπαÞÞð Þ∈M0;

where

θmðxÞ ¼
Xbm=2c

j¼0

m

2j

� �
ð�1Þjπ2jðln xÞm−2j

;

ψmðxÞ ¼
X⌈m=2⌉−1

j¼0

m

2jþ 1

� �
ð�1Þjπ2jþ1ðln xÞm−2j−1

:

(14)

To see this, consider g(z)5 exp(�ρz(Log z)m) for any ρ> 0, here Log z stands for the principal
branch of the logarithm function. For n∈N0 we writeZ ∞

0

xngðxαÞdx ¼
Z 1

0

þ
Z e

1

þ
Z ∞

e

� �
xngðxαÞdx ¼ I1 þ I2 þ I3:

Clearly I2 < ∞, and (9) implies that

I3 ≤

Z ∞

e

Cxn

ðραmxαÞs dx < ∞ for s > 0 big enough:
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Clearly I1 < ∞ when m is even. Assume that m is odd, thus

I1 ¼
Z ∞

1

y−n−2 expðραmy−αðln yÞmÞdy≤C

Z ∞

1

dy

ynþ2
< ∞:

Hence g satisfies condition (8) for all n∈N0, m∈N.
Since the real part is an additive function, we have for A > e and t ∈ [0, πα] that

R eitðlnAþ itÞm� � ¼ ðlnAÞm cos t þ
Xm−1

j¼0

m

j

� �
ðlnAÞjRðeitðitÞm−jÞ

≥ ðlnAÞm cosðπαÞ � CðlnAÞm−1

(15)

for some constant C > 0. Therefore,

lim
A→∞

Aðnþ1Þ=α
Z πα

0

jgðAeitÞjdt ≤ πα lim
A→∞

Aðnþ1Þ=α exp −cosðπαÞρAðlnAÞm þ CρAðlnAÞm−1
� 	

¼ 0

for all n∈N0.
On the other hand, there is C > 0 such that −R eitðln εþ itÞm� �

≤Cðjln εjm þ 1Þ for all
t ∈ [0, πα], thus

lim
ε→0þ

εðnþ1Þ=α
Z πα

0

jgðεeitÞjdt ≤ πα lim
ε→0þ

εðnþ1Þ=α expðCεjln εjmÞ ¼ 0 for all n∈N0:

Theorem 2 implies that

I expð−ραmeiπαxαðiπ þ ln xÞmÞ� �
∈M0;

the result follows by setting ρ 5 b/αm and using (13). As before, we can consider the
corresponding Stieltjes class for the density

f ðxÞ ¼ Ke−bx
αðθmðxÞcosðπαÞ−ψmðxÞsinðπαÞÞ; x > 0:

Example 6. For all a∈R, b > 0, m∈N, we have

xae−bθ2mðxÞ sinðπa� bψ 2mðxÞÞ∈ �M0:

Consider g(z) 5 zβ exp(�ρ(Log z)2m) for any β∈R, ρ > 0. We make the change of variable
y 5 ln x to getZ ∞

0

xngðxαÞdx ¼
Z ∞

−∞

exp −ρα2my2m þ ðnþ αβ þ 1Þy� �
dy < ∞ for all n∈Z:

As in (15) and using (13) we can see that

lim
A→∞

Aðnþ1Þ=α
Z πα

0

jgðAeitÞjdt ≤ πα lim
A→∞

Aðnþ1Þ=αþβ exp −ρðlnAÞ2m þ CρðlnAÞ2m−2
� 	

¼ 0

for all n∈Z. The function g also satisfies condition (6) for μ 5 (n þ 1)/α, n∈Z, we just set
A 5 1/« and apply the last case.
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Theorem 2 implies that

xαβI eiπαβ exp
�
−α2mρðln xþ iπÞ2m�� 	

∈ �M0;

and the result follows by setting ρ 5 b/α2m, β 5 a/α and using (13). Thus h(x) 5 sin(πa �
bψ2m(x)) is a perturbation for the strong Stieltjes class with center at f ðxÞ ¼ Kxae−bθ2mðxÞ.

Example 7. For all a > 0, 0 < α < 1/2 we have

xa−1e−θðxÞ
sinðπa� ψðxÞÞ þ 2e−θðxÞ sinðπaÞ þ e−2θðxÞ sinðπaþ ψðxÞÞ

1þ 2 cosðψðxÞÞe−θðxÞ þ e−2θðxÞð Þ2
∈M0;

where θ(x) 5 xα cos(πα), ψ (x) 5 xα sin(πα).

Consider gðzÞ ¼ zβð1þ e−zÞ−2e−z for arbitrary β > � 1/α. For all n∈N0 we have thatZ ∞

0

xngðxαÞdx≤
Z ∞

0

xnþαβe−x
α
dx < ∞:

When Rz > 0 we have that j1þ e−zj≥ 1− e−Rz, therefore

lim
A→∞

Aðnþ1Þ=α
Z πα

0

jgðAeitÞjdt ≤ πα lim
A→∞

Aðnþ1Þ=αþβ e−A cosðπαÞ

ð1� e−A cosðπαÞÞ2 ¼ 0 for all n∈N0:

For 0 < « < 1 we have Z πα

0

dt

j1þ e−εitj2 ¼
Z πα

0

dt

2þ 2 cosðεtÞ≤
πα
2
;

Hence

lim
ε→0þ

εðnþ1Þ=α
Z πα

0

jgðεeitÞjdt ≤ πα
2

lim
ε→0þ

εðnþ1Þ=αþβe−ε cosðπαÞ ¼ 0:

Theorem 2 implies that

xαβI eiπαβð1þ expð−xαeiπαÞÞ−2 expð−xαeiπαÞ
� 	

∈M0;

and the result follows by setting β 5 (a � 1)/α.
Notice that

~hðxÞ ¼ sinðπa� ψðxÞÞ þ 2e−θðxÞ sinðπaÞ þ e−2θðxÞ sinðπaþ ψðxÞÞ
ð1þ e−θðxÞÞ−2 1þ 2 cosðψðxÞÞe−θðxÞ þ e−2θðxÞð Þ2

is a bounded continuous function onRþ, and it can be used to construct a Stieltjes class with
center at ~f ðxÞ ¼ Kxa−1ð1þ e−θðxÞÞ−2e−θðxÞ. Now we set δ 5 (cos(πα))�1/α, and a change of

variable implies that hðxÞ ¼ ~hðδxÞ can be used to get a Stieltjes class with center at

f ðxÞ ¼ δ~f ðδxÞ ¼ K 0xa−1
e−x

α

ð1þ e−xαÞ2:

For 0 < α < 1/2 the last densities are the densities of M-indeterminate powers of random
variables following a half-logistic distribution, see [8, Section 6].
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3. Operators on the vanishing moment subspace
For m∈N, s > 0 we introduce the operator Tm,s as follows

Tm;sgðxÞ ¼ x1=m−1gðx1=m � sÞχðsm;∞ÞðxÞ:

The binomial formula implies that Tm;sM0 ⊂M0:Z ∞

sm
xngðx1=m � sÞ dx

x1−1=m
¼ m

Z ∞

0

ðxþ sÞmn
gðxÞdx

¼ m
Xmn

j¼0

mn

j

� �
sj
Z ∞

0

xmn−jgðxÞdx ¼ 0:
(16)

The case m 5 1 was considered in [8, Lemma 1].
For a, b > 0 and 0 < α < 1 we have

ðaþ bÞα ≤ aα þ bα: (17)

Example 8. Let m∈N; s > 0; 0 < α < 1=2 fixed. From (12) we have

x1=m−1 sinðtanðπαÞððx1=m � sÞαÞÞe−ðx1=m�sÞαχðsm;∞ÞðxÞ∈M0;

thus (17) implies that

hðxÞ ¼ sinðtanðπαÞððx1=m � sÞαÞÞeðxα=m−ðx1=m�sÞαÞχðsm ;∞ÞðxÞ

is a bounded continuous function onRþ that can be used to obtain a Stieltjess class with center
at f(x) 5 Kx1/m�1 exp(�xα/m), x > 0.

If g1; . . . gm ∈M0 and a1; . . . am ∈R then
P

iaigi ∈M0, hence the following result is a
generalization of the last observation.

Proposition 9. Let (J, μ) be a measure space. Assume that G : Rþ 3 J →R is a measurable

function such that xnGðx;ωÞ∈L1ðRþ 3 J ; dx⊗ dμÞ for all n∈N0 or n∈Z and

Gð$;ωÞ∈M0 or �M0 for allω∈Ω;

therefore
R
ΩGð$;ωÞdμðωÞ∈M0 or �M0.

Proof. Fubini’s theorem implies thatZ ∞

0

xn
Z
Ω
Gðx;ωÞdμðωÞdx ¼

Z
Ω

Z ∞

0

xnGðx;ωÞdxdμðωÞ ¼ 0 for all n∈N0 or n∈Z:

,

Corollary 10. Let μ be a positive bounded measure on ðRþ;BþÞ such thatZ ∞

0

xndμ < ∞ for all n∈N0: (18)

If g ∈M0, then μ * g ∈M0.

Proof. We consider the function G : Rþ 3Rþ
→R given by

Gðx; sÞ ¼ gðx� sÞχðs;∞ÞðxÞ:
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Clearly G is a measurable function and satisfiesZ ∞

0

Z ∞

0

xnjGðx; sÞjdx⊗ dμðsÞ ¼
Z ∞

0

Z ∞

0

ðxþ sÞnjgðxÞjdxdμðsÞ

¼
Xn

j¼0

n

j

� �Z ∞

0

xjjgðxÞjdx
Z ∞

0

sn−jdμðsÞ < ∞

for all n∈N0. Since g ∈M0 we have that Gð$; sÞ∈M0 for all s> 0, and the last result implies
that

R∞

0
Gð$; sÞds∈M0. On the other hand, we haveZ ∞

0

Gðx; sÞds ¼
Z ∞

0

gðx� sÞχð0;xÞðsÞdμðsÞ ¼ μ * gðxÞ; x > 0:

We apply the last result to obtain new Stieltjes classes with center at f(x)5K exp(�xα), x> 0,
as follows.

Example 11. By (12)we have gðxÞ ¼ sinðtanðπαÞxαÞexpð−xαÞ∈M0, with 0< α<1/2 fixed.
Consider the measures dμ1(s) 5 χ(0,1)ds and dμ2(s) 5 e�sds on Rþ. Thus,

μ1 * gðxÞ ¼
Z x∧1

0

sinðtanðπαÞðx� sÞαÞe−ðx�sÞαds∈M0;

where x ∧ 1 5 min{x, 1} and

μ2 * gðxÞ ¼
Z x

0

sinðtanðπαÞðx� sÞαÞe−ðx�sÞα−sds∈M0:

From (17) we get

jμ1 * gðxÞj≤
Z 1

0

es
α
ds e−x

α
for all x > 0;

hence the bounded function h(x)5 μ1 * g(x) exp(x
α) can be used to construct a Stieltjes class

with center at f(x) 5 K exp(�xα), x > 0.
Since (x/e)α≤ x/e for all x≥ e, there exist a constant 0 <C< 1 such that xα� x≤�Cx for all

x ≥ e, thus

jμ2 * gðxÞj≤
Z x

0

es
α−sds e−x

α
≤ eC þ

Z ∞

0

e−Csds

� �
e−x

α
for all x > 0;

and we proceed as before to construct the corresponding Stieltjes class.
Now, let p be a polynomial with real coefficients, with p(0) 5 0 and p0 > 0 on Rþ. We

introduce the operator Rp as follows

RpgðxÞ ¼ gðp−1ðxÞÞ
p0ðp−1ðxÞÞ; x > 0;

where p�1 is the inverse function of p onRþ. As in (16), a change of variable and the binomial
formula implies that RpM0 ⊂M0.
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Example 12. Let 0 < α < 1/2, a, b > 0 be fixed and 1≤ n < (2α)�1, n∈N. From (12) we have
that gðxÞ ¼ xna−1 sinðπna− b tanðnπαÞxnαÞexpð−bxnαÞ∈M0. We set pn (x)5 xn, x≥ 0, to get
that

RpngðxÞ ¼ n−1xa−1 sinðπna� b tanðπnαÞxαÞexpð−bxαÞ∈M0;

therefore hn(x) 5 sin(πna � b tan(nπα)xα), x > 0, is a perturbation for a Stieltjes class with
center at f(x)5Kxa�1 exp(�bxα), x> 0. As far as we know, these are new Stieltjes classes when
2 ≤ n < (2α)�1, n∈N.

Remark 13. LetΛ≠∅. Assume that ffλgλ∈Λ⊂M0. If x
−1fλ0ðx−1Þ∈ ffλgλ∈Λ, then fλ0 ∈ �M0.

Example 14. Let 0 < c1, c2 < 1/2, b1, b2 > 0, a∈R be fixed and 1≤ n < 2−1ðc−11 ∧c−12 Þ, n∈N.
From (10) we have that

xna−1 sin πnaþ b2 tanðπnc2Þx−nc2 � b1 tanðπnc1Þxnc1ð Þexpð−b1xnc1 � b2x
−nc2Þ∈ �M0;

we proceed as in Example 12 and use Remark 13 to get that

xa−1 sin πnaþ b2 tanðπnc2Þx−c2 � b1 tanðπnc1Þxc1ð Þexpð−b1xc1 � b2x
−c2Þ∈ �M0:

Once again, we obtain new perturbations for strong Stieltjes classes with center at

f ðxÞ ¼ Kxa−1 expð−b1xc1 − b2x
−c2Þ, x > 0.

4. Krein criterion and the Hilbert transform
In this sectionwe use a different technique to construct Stieltjes classes. Thismethod involves
the computation of the Hilbert transform of ln f, where f is a density f ∈M satisfying the
Krein criterion (2). In [5, Theorem 1.2] was proved that Sðf ; sinðHe ln f ÞÞ is a Stieltjes class
with center at f, where the Hilbert transformHe is defined in (3). The following result can be
found in [5, Remark 2.1, Lemmas 2.2 and 2.3] and provides the computation of the Hilbert
transform of power functions, constant functions and the logarithm function.

Proposition 15. a) For any constant c∈R we have HeðcÞ≡ 0. b) Let 0 < jγj < 1. Then

HeðxγÞðtÞ ¼ −tanðγπÞtγ; t > 0:
c) Heðln xÞ≡ − π.

As a consequence we obtain a Stieltjes class with center at a generalized inverse Gaussian
density.

Example 16. Let a∈R, b1, b2 > 0, 0 < c1, c2 < 1/2. Consider the density

f ðxÞ ¼ Kxa−1 expð−b1xc1 − b2x
−c2Þ, x > 0. Proposition 15 implies that

Heðln f ÞðtÞ ¼ −πða� 1Þ � b2 tanðπc2Þt−c2 þ b1 tanðπc1Þtc1 ; t > 0:

Thus hðxÞ ¼ sin πaþ b2 tanðπc2Þx−c2 − b1 tanðπc1Þxc1ð Þ, x > 0, is a perturbation for the
Stieltjes class with center at f. This is the case n 5 1 in Example 14.

Remark 17. As before, we can see that h(x)5 sin(πa� b tan(πα)xα), x > 0, is a perturbation
for the Stieltjes class with center at the density f(x) 5 Kxa�1 exp(�bxα), x > 0, provided that
0 < α < 1/2, a, b > 0. This is the case n 5 1 in Example 12.

Finally, in the last examples we get two Stieltjes classes that we could not obtain by the
method of complex integration given in Section 2. The densities involved are special cases of
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generalized log-normal densities, see [9]. In order to construct these examples we need to find
out the Hilbert transform of j ln xjn, x>0, n∈N. Thus, we need to compute the principal value
of the singular integral in (3) with u 5 j ln xjn, n∈N.

For all k; n∈N0 we have the identity, see [10, p. 69, eq. 4.1.51],Z
xnðln xÞkdx ¼ xnþ1

Xk

j¼0

ð−1Þjk!
ðnþ 1Þjþ1ðk� jÞ! ðln xÞ

k−j
: (19)

We introduce the following constants

γjd
X∞
n¼0

1

ð2nþ 1Þj ¼ ð1� 2−jÞζðjÞ; j > 1; j∈N;

where ζ(z) is the zeta function.
First we compute the Hilbert transform of even powers of j ln xj.

Lemma 18. For m∈N we have

Heðjln xj2mÞðtÞ ¼ −
2ð2mÞ!

π

Xm
‘¼1

22‘γ2‘
ð2m� 2‘þ 1Þ! ðln tÞ

2m−2‘þ1
; t > 0: (20)

Proof. By (3) it follows that

Heðjln xj2mÞðt2Þ ¼ 22mþ1t

π
P

Z ∞

0

jln xj2m
t2 � x2

dx; t > 0:

Let t > 0 fixed and « > 0 small enough. Since the geometric series with ratio r 5 x2/t2

converges uniformly for x ∈ [0, t �«], and by using (19), we get that

1

t2

Z t−ε

0

jln xj2m
1� ðx=tÞ2 dx ¼

X∞
n¼0

1

t2nþ2

Z t−ε

0

x2njln xj2mdx

¼
X2m
j¼0

ð�1Þjð2mÞ!
ð2m� jÞ!

X∞
n¼0

1

t2nþ2

"
x2nþ1ðln xÞ2m−j

ð2nþ 1Þjþ1







x¼t−ε

x¼0

#

¼ P2m
j¼0

ð− 1Þjð2mÞ!
ð2m− jÞ! ðlnðt − εÞÞ2m−j

X∞
n¼0

ðt − εÞ2nþ1

ð2nþ 1Þjþ1
t2nþ2

:

Multiplying the last equality by t and using that arctanhðxÞ ¼ P∞

n¼0x
2nþ1=ð2nþ 1Þ for

jxj < 1, we have

t

Z t−ε

0

jln xj2m
t2 � x2

dx ¼
X∞
n¼0

ð2mÞ!ðt � εÞ2nþ1

ð2nþ 1Þ2mþ1
t2nþ1

þ ðlnðt � εÞÞ2marctanh t � ε
t

� �

þ
X2m−1

j¼1

ð�1Þjð2mÞ!
ð2m� jÞ! ðlnðt � εÞÞ2m−j

X∞
n¼0

ðt � εÞ2nþ1

ð2nþ 1Þjþ1
t2nþ1

¼ I1ðεÞ þ I2ðεÞ þ I3ðεÞ:

(21)

M-
indeterminate

probability
distributions

239



Similarly, we can obtain that

−

Z ∞

tþε

1

x2
jln xj2m

1� ðt=xÞ2 dx ¼ −
X2m
j¼0

ð2mÞ!
ð2m� jÞ! ðlnðt þ εÞÞ2m−j

X∞
n¼0

t2n

ð2nþ 1Þjþ1ðt þ εÞ2nþ1
:

As before, we multiply the last equality by t to get

t

Z ∞

tþε

jln xj2m
t2 � x2

dx ¼ �
X∞
n¼0

ð2mÞ!t2nþ1

ð2nþ 1Þ2mþ1ðt þ εÞ2nþ1
� ðlnðt þ εÞÞ2marctanh t

t þ ε

� �

�
X2m−1

j¼1

ð2mÞ!
ð2m� jÞ! ðlnðt þ εÞÞ2m−j

X∞
n¼0

t2nþ1

ð2nþ 1Þjþ1ðt þ εÞ2nþ1

¼ J1ðεÞ þ J2ðεÞ þ J3ðεÞ:
(22)

By the other hand,

lim
ε→0þ

I1ðεÞ þ J1ðεÞ ¼ 0;

and we apply theWeierstrass M-test to the third terms in (21) and (22), considering «∈ [0, «0)
with «0 small enough, to obtain

lim
ε→0þ

I3ðεÞ þ J3ðεÞ ¼ −
Xm
‘¼1

2ð2mÞ!γ2‘
ð2m� 2‘þ 1Þ!ðln tÞ

2m−2‘þ1
:

Finally, we use that arctanhðxÞ ¼ 2−1 ln 1þx
1− x

, jxj < 1, to obtain

Heðjln xj2mÞðt2Þ ¼ �22mþ2

π

Xm
‘¼1

ð2mÞ!γ2‘
ð2m� 2‘þ 1Þ!ðln tÞ

2m−2‘þ1

þ2m

π
lim
ε→0þ

ðlnðt � εÞÞ2m ln
2t � ε

ε
� ðlnðt þ εÞÞ2m ln

2t þ ε
ε

� �
:

L’Hôpital’s rule implies that the last limit is equal to zero, and the result follows. ,
Similar to (9), nowwe give a basic estimate for the logarithm function: since xs≤ exp(xs) for

all x, s > 0, we have

ln x≤
xs

s
for all x; s > 0: (23)

Example 19. For m∈N consider the density f(x) 5 K exp(�j ln xj2m), x > 0. ClearlyZ ∞

1

xnf ðxÞdx ¼ K

Z ∞

0

e−x
2mþðnþ1Þxdx < ∞;

for all n ∈Z, then f ∈ �M. From (23) we getZ ∞

0

jln xj2m
1þ x2

dx ¼ 2

Z ∞

1

jln xj2m
1þ x2

dx < ∞;
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thus f satisfies (2), therefore sinðHeðjln xj2mÞðtÞÞ is a perturbation for the Stieltjes class with

center at f, where Heðjln xj2mÞ is given in (20).

Finally, we compute the Hilbert transform of odd powers of j ln xj. The computations are very
similar to those in the proof of Lemma 18.

Lemma 20. For m∈N we have

Heðjlnxj2m−1ÞðtÞ¼ 2ð2m�1Þ!
π

Xm
‘¼1

22‘γ2‘
ð2m�2‘Þ!ðln tÞ

2m−2‘�
X∞
n¼0

22mtnþ
1
2

ð2nþ1Þ2m
" #

; 0< t< 1:

(24)

For t > 1 we have Heðjlnxj2m−1ÞðtÞ¼Heðjlnxj2m−1Þðt−1Þ.
Proof. We just make a sketch of the proof. Let t ∈ (0, 1) fixed. We have the following
equalities

−

Z t−ε

0

ðln xÞ2m−1

t2 � x2
dx ¼ −

X2m−1

j¼0

ð−1Þjð2m� 1Þ!
ð2m� 1� jÞ! ðlnðt � εÞÞ2m−1−j

X∞
n¼0

ðt � εÞ2nþ1

ð2nþ 1Þjþ1
tnþ2

;

−

Z 1

tþε

ðln xÞ2m−1

t2 � x2
dx ¼ −

X∞
n¼0

ð2m� 1Þ!t2n
ð2nþ 1Þ2m þ

X2m−1

j¼0

ð2m� 1Þ!
ð2m� 1� jÞ!

X∞
n¼0

ðlnðt þ εÞÞ2m−1−j
t2n

ð2nþ 1Þjþ1ðt þ εÞ2nþ1
;

and

Z ∞

1

ðln xÞ2m−1

t2 � x2
dx ¼ −ð2m� 1Þ!

X∞
n¼0

t2n

ð2nþ 1Þ2m:

Therefore we obtain

π
22mþ1

Heðjln xj2m−1Þðt2Þ ¼ �
X∞
n¼0

ð2m� 1Þ!t2nþ1

ð2nþ 1Þ2m þ
Xm
‘¼1

ð2m� 1Þ!γ2‘
ð2m� 2‘Þ! ðln tÞ

2m−2‘

þ1

4
lim
ε→0þ

ðlnðt þ εÞÞ2m−1
ln
2t þ ε

ε
� ðlnðt � εÞÞ2m−1

ln
2t � ε

ε
:

The last limit is equal to zero and the result follows. When t > 1 a change of variables shows
that Heðjln xj2m−1Þðt2Þ ¼ Heðjln xj2m−1Þðt−2Þ. ,

Example 21. For m∈N consider the density f(x) 5 K exp(�j ln xj2m�1), x > 0. Then

sinðHeðjln xj2m−1ÞðtÞÞ is a perturbation for the Stieltjes class with center at f, where

Heðjln xj2m−1Þ is given in (24).

In this setting, we also can use the functions inM0 obtained in Examples 5 and 6 to construct
perturbations for Stieltjes classes with center at generalized log-normal densities.

5. Conclusion
Wegather several methods and techniques to construct systematically Stieltjes classes forM-
indeterminate probability densities defined on Rþ. We construct explicitly Stieltjes classes
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with centers at densities of M-indeterminate powers of generalized log-normal random
variables.
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