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Abstract

Purpose — In this work the author gathers several methods and techniques to construct systematically
Stieltjes classes for densities defined on R+.

Design/methodology/approach — The author uses complex integration to obtain integrable functions with
vanishing moments sequence, and then the author considers some operators defined on the vanishing moments
subspace.

Findings — The author gather several methods and techniques to construct systematically Stieltjes classes for
densities defined on R™. The author constructs explicitly Stieltjes classes with center at well-known probability
densities. The author gives a lot of examples, including old cases and new ones.

Originality/value — The author computes the Hilbert transform of powers of |Inx| to construct Stieltjes
classes by using a recent result connecting the Krein condition and the Hilbert transform.
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1. Introduction
Consider the subspace M of all functions f € L' (R") with finite moment sequence, i.e.

/ PUF@)dr < 0o forallneNo = {0,1,...}.
0
The vanishing moments subspace M is given as follows
My = {fe/\/l : / 2'f(x)dx =0 forallne NO}.
0

We also consider the subspace M of all functions f € L'(R") with strong finite moment
sequence, 1.e.

/ 2|f(x)|dx < o forallnez = {0,+1,+2,...},
0

and the corresponding strong vanishing moments subspace M.
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First, we introduce a method to get functions in M or M assume that g is an analytic
function on a region containing the sector

Se={z€C":0<argz<ma}, O0<a<l, C" =C\ {0}

We use complex integration to show that
J(g(e™x")) € My or My, Q)

provided that g satisfies suitable conditions on the boundary dS, of S,. As usual, Nz, Iz
denote the real and imaginary parts of z € C.

Then we introduce some operators mapping the subspace M, into itself. For instance, we
prove that M is invariant under the operator

- P8,

provided that y is a positive bounded measure on (R*, B") with finite moments sequence, see
(18). Here p # g is the convolution of the measure y and the function g on R* given by

prl) = [ ee= ), x>0

Suppose now that fis a probability density function (we use further just density) of a random
variable X such that all moments are finite, ie., m,:=E[X*] = [;° 2"/ (x)dx < oo for all
k € Ny, hence mq = 1. This means that f € M. It is well-known that the moment sequence
{my};2; either determines X and f uniquely, and we say that X, and also £, is M-determinate,
or that f is M-indeterminate. In the latter case there are infinitely many continuous and
infinitely many discrete distributions all sharing the same moments as X ~ f. This is a
fundamental qualitative result, see [1, 2].

In the survey [3] the author revisited recent developments on the checkable moment-(in)
determinacy criteria including Cramér’s condition, Carleman’s condition, Hardy’s condition,
Krein’s condition and the growth rate of moments. In this survey the author analyzes
Hamburger and Stieltjes cases.

In this work we only focus in the Stieltjes case, 1.e we consider distributions supported on
R™. Recall that in [4] was introduced the concept of Stieltjes class for M-indeterminate
absolutely continuous distribution function. Let f be a density in M. Assume that there exists
a function 2 € L*(R") such that ||| = 1, /2 € Mo and f& is not identically zero. Then the
Stieltjes class S(f, i) with center at f and perturbation / is given by

S(f,h) = {f(x)[1 + eh(x)] : xER", e€[-1,1]}.

Clearly, S(f, k) is a family of densities all having the same moment sequence as f.

If X ~ fis M-determinate, then the perturbation z = 0, and the Stieltjes class consists of a
single element, the center f.

The main aim of this work is to find perturbations for Stieltjes classes with center at a
density > 0. To do this, the basic idea is take a function g € M such that 2 = g/fis bounded
on R, therefore /2 will be a perturbation (up to scaling by a constant) for a Stieltjes class with
center at /. Thus, in this paper all the densities f are M-indeterminate.

When X ~ f with a density f in M, we make the obvious changes to define the strong
Stieltjes class with center at f.

In[5, Theorem 1.2] the author proved that if fis a density in M satisfying the Krein condition

* Inf(?)
A«1+ﬂM<m, )




then S(f, sin(H, Inf)) is a Stieltjes class, where H, In f is the Hilbert transform of # = In f:

2t1/2 o 2
Hou(t) == P / t”(j‘x)z dx, t>0. &)
0

In particular, here we compute H,(|lnx"), m €N, to obtain new Stieltjes classes
corresponding to M-indeterminate generalized log-normal random variables.

In order to test our approach we apply the developed methods to the generalized gamma
(GG) distribution (see Examples 4, 8, 11 and 12), powers of the generalized inverse gaussian
(GIG) distribution (see Examples 3, 14 and 16), powers of the half-logistic distribution (see
Example 7) and to the generalized lognormal (GLN) distribution (see Examples 5, 6, 19
and 21).

This work is organized as follows. In Section 2 we give the precise conditions on g to prove
(1), and we apply this result to get functions in M. In Section 3 we introduce some operators
defined on M, and we use the functions obtained in Section 2 to get new perturbations in
Examples 5, 6, 8, 11, 19 and 21, hence we give new Stieltjes classes. In the last section we
compute H,(|Inx|"),meN = {1,2,...}.

2. Functions with vanishing moments ~
In this section we use complex integration to obtain functions in M, or M. We follow the
technique introduced in [6], also in [7], where a similar result appears. In fact, in [6] the author
asks the condition g(x) > A exp(—ax®) for some A > 0, ¢ > 0 and some a € (0, 1/2), which is
replaced with our integrability conditions (4), (5) and (6) below.

Let S c C, then %ol(S) denotes the space of analytic functions on a region containing S.

Lemma 1. Let0<a <1, yeC. Suppose that g € hol(S,) satisfies the following conditions

Vg (t)| e LN(RY), @
lim A" /0 " lg(AeNdt = 0, 6)
Sl_i)rgemy /Om lg(ee™)|dt = 0, ©®)
Then
/0 ) 7 1g(te™™)dt = e~ /O ) 7 1g(t)dt. @

Proof. We pick 0 < & < A < oo, Cauchy’s theorem implies that
?{ 27'g(z)dz = 0,
Cea

where the contour C, 4 consists of the real axis from & to A, the arc of the circle z = Ae" from
t = 0to ¢ = ma, the straight line from Ae”® to e and the arc of the circle z = £e/™* from
t = 0tot = ma. Thus,
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A 7a
0=hth+hili= [ g+ [ (aeyeiadar
e 0

_ ez’na / (_teina)y—lg(_teim)dt _ Z/ (gei(mft))Vg(gei(zra—t))dt'
_A 0
Since |2*| = |,2'|m exp(—arg z34) for all A€C, ze C*, conditions (5) and (6) imply that
limy_, o[> = lim,_o+Iy = 0. Therefore from condition (4) we get

hm ([1 +[3) = 0, D

-0t A-c0
and the result follows.

Theorem 2. Let 0 < a < 1. Suppose that g € hol(S,) satisfies conditions (5), 6) with y =
n + Vla, g(x) eR for all x > 0 and

|g(x")| e LN(RT) forallneN, ornez, ®
then relation (1) holds.
Proof. By settingy = (n + D/aforallneNgor neZ, t = x% t 'dt = ax 'dx in (7) and
taking the imaginary part, the result follows. O

We recall an inequality that will be useful to get our estimates: since e* > x for all x > 0 we
have

e <’y forallx,s > 0. ©)

Throughout this work the constant K will be a normalizing constant to produce a density
function in each case.

Example 3. For all by, b, > 0, 0 < 1, ¢c3 < 1/2 and a € R we have

¥t sin(zma + by tan(zey)x™2 — by tan(ze; )2 )exp(—=b1 a7 — box~?) € M. (10)

Indeed, we just apply Theorem 2 with g(z) = 2* exp(—p:12* — poz V) forany g€ R 4, p1, p2 > 0.

Clearly g is an analytic function on {z € c* largz| < z}.
From (9) we have that g satisfies condition (8) forall0 < @ < 1,# € Z. Assume that 0 < a, al
< 1/2, then the inequalities

0 < cos(mar) <cost<1, 0 < cos(mad) <cos(At) <1 forallte[0,ra], 11
together the inequality in (9) imply that

limA(”“)/“”’/ exp(—A’p; cos(t) — A7'p,cost)dt =0 forallnez,
0

Ao

and, by making A = 1/g, the last case implies

e—0t

na
lim g+ D/a+# / exp(—€'p, cos(At) — e pycost)dt =0 forallneZ.
0

From Theorem 2 we have

X3 (exp(inap — pe™x™ — pe™™x™%)) € M,



and the result follows by setting a = ¢o, 4 = ¢1/co, B = (@ — 1)/co, p; = bilcos(nc;),i = 1,2. Thus
h(x) = sin(za + by tan(mcy)x™ — by tan(me )x4) is a perturbation for the strong Stieltjes
class with center at f(x) = Kx® ! exp(=b1x" — box=?), x > 0. This Stieltjes class was also
founded in [6].

Example 4. Forall0 < a <1/2, a, b > 0 we have
x*sin(ra — b tan(za)x™)exp(—bx®) € M. 12

Indeed, consider g(z) = 2’ exp(—pz) for any > — 1/, p > 0. From (9) we have that g satisfies
condition (8) for all # € Ny. The inequality in (11) implies condition (5) holds for all 4 = ( + 1)/
a, n € Ny. Since

o
lim g+ D/at/ / exp(—ep cost)dt < malime” /"’ =0 forallne Ny,
0

-0t =0t

Theorem 2 implies that
X3 (€™ exp(—pe™x”)) € M,

and the result follows by setting # = (@ — 1)/a and p = b/cos(za). Thus A(x) = sin(zra —
b tan(za)x®) is a perturbation for the Stieltjes class with center at fx) = Kx®* exp(—bx%),
x > 0. This Stieltjes class was also founded in [7, Example 3.2].

Recall that | - | is the floor function and [ -] is the ceiling function. For x,y € R, m € N, we
have

|m/2) m ) v 9 [m/2]-1 m ) yil 9ii1
)" = S (2 (=1 1 LA Y N e |
i = 3G i 3 (e

Example 5. Forall0<a<1/2,b>0, meN, we have
g0 On(ycos(ra)=y, (O)sin(a0) i (s (yr (x)cos(ma) + 6,,(x)sin(za))) € M,
where
|m/2) m - .
_ J m—z
o) = Z(Z) (12 (2",

[m/2]-1

o = >

Jj=0

m

T 1) (1Y 7% (Inx)" ",

To see this, consider g(z) = exp(—pz(Log 2)”) for any p > 0, here Log z stands for the principal
branch of the logarithm function. For #n € Ny we write

) 1 e 0
/ ¥'g(x%)dx = (/ +/ +/ )x”g(x")dx =L+5L+5
0 0 1 e

Clearly I < oo, and (9) implies that

< / %dx < oo fors > 0bigenough.
e (parx®)
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Clearly I; < co when s is even. Assume that m is odd, thus
0 m 5 d
- / 712 exp(pay~(Iny)")dy < C / y% < .
1 1

Hence g satisfies condition (8) for all # € N, m € N.
Since the real part is an additive function, we have for A > e and ¢ € [0, za] that

Ay cost + 3 (?) (In AY9R(e" (it)"”)

N(e"(InA +it)") -

> (InA)” cos(za) — C(InA)"™"
for some constant C > 0. Therefore,
/}imA(”“)/”‘ / lg(Ae)|dt < na/}im Almtl/a exp(—cos(ﬂa)pA(lnA)m + CpA(lnA)m_l)
—00 0 —00

=0

for all n € N, _
On the other hand, there is C > 0 such that -0 (e (Ine + 1)) < C(|Ine|” + 1) for all
t € [0, za), thus

lim g(’”l)/“/ lg(ee)|dt < nax lirgl eV/@exp(Cellne”) =0 forallne N.
0 -0+

=0t
Theorem 2 implies that
3 (exp(—pa™e™x(in + Inx)™)) € My,

the result follows by setting p = b/a™ and using (13). As before, we can consider the
corresponding Stieltjes class for the density

f(x) — K'e—bx”(Hm(;c)cc»s(not)—y/,,,(Jc)sin(/m))7 x> 0.

Example 6. Forallae R, b> 0, meN, we have

a0 (x) Sjn(;z'a — blI/Zm (x)) € MO'

Consider g(z) = 2” exp(—p(Log2)*™) for any f€ R, p > 0. We make the change of variable
y = Inx to get

/ g (x")dx = / exp(—pa®y”" + (n+ ap+1)y)dy < o forallnez.
0 _

(o]

As in (15) and using (13) we can see that
lim A0/ / lg(Ae")|dt <ma Jim A/ exp(=p(n A" + Cp(n A)”") =0
0 —oo

A-oo

for all #n € Z. The function g also satisfies condition (6) for 4 = (n + 1)/a, n € Z, we just set
A = 1/e and apply the last case.



Theorem 2 implies that
PN (ei”"ﬂ exp(—a”p(Inx + iﬂ)zm)) € My,

and the result follows by setting p = b/a””, f = a/a and using (13). Thus Z(x) = sin(ra —
Dby ,,(%)) is a perturbation for the strong Stieltjes class with center at f(x) = Kx%e "),

Example 7. Foralla > 0,0 < a < 1/2 we have
xa_le_g(x)sin(m —y(x)) + 2679 sin(ra) + e %@ sin(za + w(x))

€ M.,
(1 + 2 cos(y(x))e0® + e=200))? 0

where 8(x) = x* cos(zra), y(x) = x* sin(za).
Consider g(z) = 2/(1 4 e7%) %™ for arbitrary > — 1/a. For all n € N we have that

/ x”g(x“)dxs/ K™ dx < co.
0 0

When Rz > 0 we have that |1 + e7?| > 1 —e™"%, therefore

e—A cos(za)
=0 forallneN,.

A-oo

lim A"V [ |g(Ae")|dt <malim AUV S
0 A—oco (1 _ e—A cos(mz))

For 0 < &£ <1 we have

/ﬂa dt B /ﬂa dt <£a
o [T+ee Jo 2+2cos(et)” 27

na
lim 8(n+1)/a/ |g(se”)|dt§% li%g(f1+l)/a+/1e—scos(na) =0.
0 e~

=0t

Hence

Theorem 2 implies that
PR (ei’"”‘ (1 + exp(—x%e™)) ™ exp(—x“ei”“)) e M,,
and the result follows by setting g = (@ — 1)/a.
Notice that

) = sin(za — w(x)) + 27 sin(za) + e ¥ sin(za + y(x))
(1 + efe(x))fZ(l +2 cos(w(x))e*e(” + e—29(x))2

is a bounded continuous function on R™, and it can be used to construct a Stieltjes class with
center at £(x) = Kx*}(1 + @))% Now we set § = (cos(ra))”* and a change of

variable implies that z(x) = (5x) can be used to get a Stieltjes class with center at

2

e)C

f(x)=6f(6x) = K'x* m

For 0 < a < 1/2 the last densities are the densities of M-indeterminate powers of random
variables following a half-logistic distribution, see [8, Section 6].
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AJMS 3. Operators on the vanishing moment subspace
28 9 For m e N, s > 0 we introduce the operator T, ; as follows
b

Tm.sg(x) = xl/m—lg(xl/m - s))((s’",oo) (x)
The binomial formula implies that T, Mo C My

® d ® mn
236 g =) S —m [ s e
0

s

e 16)
—my (7)54 / P ig(x)dx = 0,
=0 J 0
The case m = 1 was considered in [8, Lemma 1].
Fora,b>0and 0 < a <1 we have
(a+b)"<a” + 10" 17

Example 8. LetmeN,s > 0,0 < a < 1/2 fixed. From (12) we have

a

2" sin(tan (za) (/" — 5)))e”¢"") X (sn00) () € Mo,

thus (17) implies that
. a /m_ (o 1/m__ o\
h(x) = sin(tan(za)((x¥/™ — 5)%))e" -G =s) ))(@m,oo)(x)
is a bounded continuous function on R* that can be used to obtain a Stieltjess class with center
at fix) = Kx""~1 exp(—x®™), x > 0.

If g1,...8n€ Mo and a1,...a, €R then ) ;a;g; € My, hence the following result is a
generalization of the last observation.

Proposition 9. Let (J, u) be a measure space. Assume that G : RT X | — Ris a measurable
Sunction such that ¥"G(x,w) € L"(R" X J,dx @ du) for alln € Ny or n € Z and

G(-,w)eMyor M, forallweQ,
therefore [,G(-,w)du(w) € My or M.

Proof. Fubini’s theorem implies that

/ ¥ / O, w)du(w)dx = / / PG(x, w)dxdu(@) = 0 forallneNo ornez.
JO Q QJo
0

Corollary 10. Let u be a positive bounded measure on (R*, B") such that

/ 2'du < oo foralln e Nj. 18)
0

If g € My, then u+g € M,.
Proof. We consider the function G : RT X RT — R given by
g(xv S) = g(x - s))((s‘oo) (JC)



Clearly G is a measurable function and satisfies

//x|g(xs|dx®d,u // (x + )" |g(x)|dxdp(s)
—Z() [ Fletwonas [ siauts) <

foralln e NO Since g € M, we have that G(-, s) € M, for all s > 0, and the last result implies
that fo s)ds € M. On the other hand, we have

/ otxs)ds = [ " 20t — 700 ()du(s) = p*glr), 1> 0.
0 JO

We apply the last result to obtain new Stieltjes classes with center at f{x) = K exp(—x%), x >0,
as follows.

Example 11. By (12) we have g(x) = sin(tan(za)x*)exp(—x*) € My, with 0 < a < 1/2 fixed.
Consider the measures duy(s) = yonds and dux(s) = eds on R*. Thus,

XAl
uy*g(x) = / sin(tan(za)(x — s)*)e """ ds € M,
0
where x A1 = min{x, 1} and

1y % g(x) = /0 " sin(tan(za) (x — s)")e" " ds € My,

From (17) we get

1
|y xg(x)| < / eds e forallx > 0,
0

hence the bounded function z(x) = p1 * g(x) exp(x®) can be used to construct a Stieltjes class
with center at fix) = K exp(—x%), x > 0.

Since (x/e)* < x/e for all x > e, there exist a constant 0 < C < 1 such that x* — x < —Cx for all
x > e, thus

luy g (x)| < / e ds e < (6 —l—/ e_csds> e™ forallx >0,
0 0

and we proceed as before to construct the corresponding Stieltjes class.
Now, let p be a polynomial with real coefficients, with p(0) = 0 and p’ > 0 on R™. We
introduce the operator R, as follows

Rty — £ @)

P i)

where p ! is the inverse function of p on R*. As in (16), a change of variable and the binomial
formula implies that K, M, C M.

x>0,
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Example 12. Let0<a<1/2, a,b> 0 be fixedand 1 <n < 2a)~", ne N. From (12) we have
that g(x) = x"! sin(zna — b tan(nza) ¥ )exp(—bx"*) € Mo. We set p,, (x) = ", x >0, to get
that

R, g(x) = n~ 2" sin(zna — b tan(wna)x")exp(—bx*) € M,

therefore h,(x) = sin(zna — btanmza)x®), x > 0, is a perturbation for a Stieltjes class with
center at fix) = Kx“~1 exp(—bx®), x > 0. As far as we know, these are new Stieltjes classes when
2<n<@a) L, neN

Remark 13. Let A # @. Assume that {f;} ,cn C Mo If x7 3, (x71) € {f3} 1e 0 then fo, € Mo,
Example 14. Let0<cy,¢2<1/2,b1,b2>0, a € Rbe fixedand1 <n < 271 (c7 Aczh), ne N,
From (10) we have that

¥V sin(zna + by tan(zncy)x ™" — by tan(mnc )¥" )exp(=bia™ — box ") € My,

we proceed as in Example 12 and use Remark 13 to get that

x*sin(zna + by tan(mncy)x™? — by tan(zne, )17 exp(=b1x — box™?) € M.

Once again, we obtain new perturbations for strong Stieltjes classes with center at
f(x) = Kyl exp(—blx“ —bzx‘fz), x>0.

4. Krein criterion and the Hilbert transform

In this section we use a different technique to construct Stieltjes classes. This method involves
the computation of the Hilbert transform of Inf, where f is a density f € M satisfying the
Krein criterion (2). In [5, Theorem 1.2] was proved that S(f, sin(H, Inf)) is a Stieltjes class
with center at f, where the Hilbert transform H, is defined in (3). The following result can be
found in [5, Remark 2.1, Lemmas 2.2 and 2.3] and provides the computation of the Hilbert
transform of power functions, constant functions and the logarithm function.

Proposition 15. @) For any constant c € R we have H,(c)=0. b) Let 0 < |y| < 1. Then
H,(x7)(t) = —tan(yzx)t", ¢>0.

¢ H(Inx)= —m.
As a consequence we obtain a Stieltjes class with center at a generalized inverse Gaussian
density.
Example 16. Let a€R, by, by > 0, 0 < ¢y, ¢2 < 1/2. Consider the density
F(x) = Kx®exp(=b1xt — box™%), x > 0. Proposition 15 implies that

H.(Inf)(¢) = —n(a — 1) — by tan(mcs)t™ + by tan(zmey )4, ¢ > 0.

Thus h(x) = sin(wa + by tan(zcz)x™2 — by tan(zer )x), x > 0, s a perturbation for the
Stieltjes class with center at f. This is the case n = 1 in Example 14.

Remark 17. As before, we can see that h(x) = sin(za — b tan(za)x®), x > 0, is a perturbation
for the Stieltjes class with center at the density flx) = Kx®1 exp(—bx%), x > 0, provided that
0<a<1/2 a b>0. Ths is the case n = 1 in Example 12.

Finally, in the last examples we get two Stieltjes classes that we could not obtain by the
method of complex integration given in Section 2. The densities involved are special cases of



generalized log-normal densities, see [9]. In order to construct these examples we need to find
out the Hilbert transform of | In x|", x > 0,7 € N. Thus, we need to compute the principal value
of the singular integral in (3) with # = | Inx|*, n € N.

For all k,7n € Ny we have the identity, see [10, p. 69, eq. 4.1.51],

/ (Inx)‘dy = x “*1ZMJ(’:)(1M)’€—/. 19)

We introduce the following constants

Z —

_2—])4’(7)’ j>1ajENa
s 2n+1

where £(z) is the zeta function.
First we compute the Hilbert transform of even powers of | Inx|.

Lemma 18. For m e N we have

m 2 (27}1) : < 22/72[ 2m—20+1
H,([Inx[*")(t) = >  _(In?) , t>0. (20)
T = (2m—20+1)

Proof. By (3) it follows that

2m—+1 )
Ho([n ) (1) = 2 tP / '1“' Sdx, 10

Let ¢ > 0 fixed and & > 0 small enough. Since the geometric series with ratio » = x%/£
converges uniformly for x € [0, f —¢&], and by using (19), we get that

1 [ |« © 1 [ )
= = _dx = / 22 Inx|"dx
tZ/O 1 _ (x/t)2 Z t2ﬂ+2 0 | |

n=0

X2 (Inx) "
(2n + 1y

n (1Y em)! 1
()(M?Z

x=t—¢
x=0 :|

2n+1
(=™

(2n + 1Y g2
S X /(20 + 1) for

o (1) =

5 -y L Gy

n=

Multiplying the last equality by ¢ and using that arctanh(x) =
|x| <1, we have

t—e 2m 0 ol
|lnx| = M 2m tf&'
t/o Foz® = ; (2 1P T U~ ) Tarctanh | =
SR eyem, o S )

2m]
= (2m —j)! ;

= I(e) + D) + L(e).

om+1 J+1t2n+1
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AJMS Similarly, we can obtain that

28,2 ®© 1 |1nx|2m om (ZWL) 0 LLZH
- S ——dr=~— 7lnt+e om=i ]
/Hs A2 1- (t/x)z ]2: (2m — ) nZ:(; M+ 1 j+1 t+ )2n+]

As before, we multiply the last equality by ¢ to get

* |Inx*" = (2m)m1 o t
= — (In(¢ tanh (| ——
t/ dx Z (In(? + €))™arctan ;

— 2” + 1 2m+1( t+ )27l+1 + e
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2m—1 (27’”)' 0 t2n+1

_;7(21%_]) (In(t + )™y

n—0 21’l+1]+] t+e

)2n+l

Ji(e) + J2(€) + J3(e).

22)

By the other hand,
im 7 () + /i(e) =0,

-0

and we apply the Weierstrass M-test to the third terms in (21) and (22), considering & € [0, &)
with &y small enough, to obtain

. . 2(2m)\yy 2m—20+1
limZ(e) + J5() = — ——————(In?) .
e=0* ; (2m —2¢+1)!

Finally, we use that arctanh(x) = 27! In £, [x| < 1, to obtain

22m+2 m (27%) 7
2my (42 _ 20 2m—20+1
2m . om 2t — & om 2t + &
—1 In(¢ — In——— (1 In——|.
+— lim {( n(t—e))™"In - (In(z+¢))™ In -
L’Hopital’s rule implies that the last limit is equal to zero, and the result follows. O

Similar to (9), now we give a basic estimate for the logarithm function: since x° < exp(x°) for
all x, s > 0, we have

S

lnxS% forallx,s > 0. (23)

Example 19. For m € N consider the density i) = K exp(—|Inx|[*"), x > 0. Clearly
/ PF()dx = K / gy < oo,
1 0

for alln € Z, then f € M. From (23) we get

© [Inx*" /°° |In x|
de =2 d
/0 T2~ 7729




thus f satisfies (2), therefore sin(H,(|Inx|*")(t)) is a perturbation for the Stieltjes class with
center at f, where H,(|Inx|") is given in (20).

Finally, we compute the Hilbert transform of odd powers of | In x|. The computations are very
similar to those in the proof of Lemma 18.

Lemma 20. For m e N we have

2 1 m © 22m n+h
He(\lnx|2’"71)(t m— i’2§€ (In 2m 2 Z zn-:l Zm , O<t<1.

HM

n=0

(24)

For t > 1 we have H,(|Inx[*" ") (£) = H,(|Inx|” ") (7).

Proof. We just make a sketch of the proof. Let ¢ € (0, 1) fixed. We have the following
equalities

t—¢ 2m—1 2m—1 Vi 0 2n+1
(inx) (—1y(2m — 1)} S (E—e)
— dx = — E ~(In(t — &))"~ E : )
/0 2 — 52 — (2m—1-j)! (In( ) (204 1) e

1 2m-1 ) ) 2m—1 ) 2m=1-j 125
(Inx) (2m —1)lt (2m —1)! (In(t +¢€)) t
- S dr==) + §
/Prb

22— 2 = e+ @m—1 )2 Qnt 1) (L + )P
lnx 2m— 1 ) l‘2"
and / =—(2m —1)!
( ) ; (2n+1)""
Therefore we obtain
s 2m— 1 = 1) t2n+1 “ (Zm - 1)'7/2( 2m—2(
S He([l = (Int
22m+1H (l nxl ; 21’1 + 1 2m - (2m . 26)! (n )
1. m— 2 m— 2t —
+ lim (In(t + &))" 1n$ — (In(t — &))" ln%.

The last limit is equal to zero and the result follows. When ¢ > 1 a change of variables shows
that H, (|Inx[*" ™) (2) = H,([Inx[*" 1) (+72). O
Example 21. For me N consider the density flx) = Kexp(—| 1nx|2m_1), x> 0. Then
sin(H, (|Inx|” ) (£)) is a perturbation for the Stieltjes class with center at f, where
H,([Inx ") is given in (24).

In this setting, we also can use the functions in M obtained in Examples 5 and 6 to construct
perturbations for Stieltjes classes with center at generalized log-normal densities.

5. Conclusion
We gather several methods and techniques to construct systematically Stieltjes classes for M-
indeterminate probability densities defined on R*. We construct explicitly Stieltjes classes
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AJMS with centers at densities of M-indeterminate powers of generalized log-normal random
28 9 variables.
y
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