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Abstract

Purpose — The present article deals with the initiation and study of a uniformity like notion, captioned
p-uniformity, in the context of a generalized topological space.

Design/methodology/approach — The existence of uniformity for a completely regular topological space is
well-known, and the interrelation of this structure with a proximity is also well-studied. Using this idea, a
structure on generalized topological space has been developed, to establish the same type of compatibility in the
corresponding frameworks.

Findings — It is proved, among other things, that a y-uniformity on a non-empty set X always induces a
generalized topology on X, which is u-completely regular too. In the last theorem of the paper, the authors
develop a relation between u-proximity and g-uniformity by showing that every p-uniformity generates a
u-proximity, both giving the same generalized topology on the underlying set.

Originality/value — It is an original work influenced by the previous works that have been done on generalized
topological spaces. A kind of generalization has been done in this article, that has produced an intermediate
structure to the already known generalized topological spaces.
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1. Introduction and prerequisites
It was Csaszar [1] who first initiated the idea of generalized topological space. This opened up
anew direction which was pursued by many mathematicians toward generalizations of many
topological concepts to this new arena. A generalized topology (GT, for short) u on a set Xis a
collection of subsets of X such that ¢ € u and arbitrary unions of members of u belong to y;
and the ordered pair (X, u) then stands for a generalized topological space (henceforth
abbreviated as GTS). The sets in u are called y-open sets and their complements u-closed sets.
A GTS (X, p) is called a strong GTS if X € u. For any subset A of a GTS (X, p), the y-interior
iu(A) and p-closure c,(A) of A are defined in the usual way as:

1(A) =\{BcX :BCAand Bepu}and c,A = (\{BCX : ACBand X\ Bepu}.

As is expected, p-interior and p-closure operators on a GTS (X, u) obey the following basic
properties:

1 i) cAandA CcA) forallACX
@ AcBcX= /A ciB)and c,(4) C c,(B).
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@) A(C X)is p-open (u-closed) if and only if A = i,(A) (resp. A = c,(A)).
@ ,X\A4) =X\¢A), forallAC X

The notion of uniformity is well-known for a topological space. This article is intended to
initiate the study of a uniformity-like structure, termed p-uniformity, on a generalized
topological space.

In what follows in Section 2, we define p-uniformities on a nonempty set X axiomatically
and show that such a p-uniformity induces a generalized topology on X. Although a
u-uniformity is not necessarily a uniformity. In Section 3, we also prove that a y-uniform
space satisfies a sort of complete regularity condition. Finally in Section 4, we establish that
for a p-uniform space, there exists a y-proximity relation [2] such that the same generalized
topology originates from both the structures.

We now recall the definition of uniformity on a set and some well-known relevant results
thereof; related details may be found in [3].

Definition 1.1. Let X be a non-empty set:
1) A non-void subset of X X X is called a binary relation on X.

(2)  The identity relation on X is called the diagonal in X X X and is denoted by AX) or
simply by A. Thus A = {(x, x) : x € X}.

() The inverse of a relation U, denoted by U™, is defined by U™ = {(y, %) : (x, ) € U'.
@) A relation Uis said to be symmetric if U = UL,
(B) The composition of two relations U and V, denoted by U-°V, is defined by
UV ={y):(x,2)eUand @y) €V, for somezeX}.
Definition 1.2. Let X be a non-empty set. A non-void family U of subsets of X X X, is said
to be a uniformity on X if the following conditions hold:
1) ACU, forevery Uell.
@ U VeuU=UnVel
B UeUand VU=V el
@ UeU=U'lelU
bB) UeU= there exists V€U such that V-V C U.
The pair (X, U) is called a uniform space.

Definition 1.3. Let U be a binary relation on X and A a non-void subset of X. Then we define,
UA) ={xeX :(a,x)eU, forsomeacA}. Inparticular, if A = {p}, for
somep € X, then Up) = U{p}) = {x € X:(p,x) € U}.

Now we state some well-known results for a uniform space (X, i).

Result 1.4. LetU be a uniformity on a non-void set X. Let a family T of subsets of X be defined
as follows: A subset G of X belongs to t if and only if to every element p € G, there
corresponds some Uy, €U such that Uyp) C G. Then 7 is a topology on X.

Definition 1.5. [4]If (X,U)is a uniform space the topology t(U) of the uniformity U, or the
uniform topology, is the family of all subsets G of X such that for each x in G
there is U in U such that Ux) C G.

Result 1.6. A topological space (X, t) is uniformizable if and only if it is completely regular.
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2. p-uniformity
Before going into the details we first state two definitions which will be required later on.

Definition 2.1. [5] Let X be a non-empty set and pCP(X). Then f is called a base for a
generalized topology pon X if u = {Up' : p' C p}.

Definition 2.2. /6] Let (X, y) and (Y, &) be two generalized topological spaces A functionf: (X,
1) = (Y, &) is said to be u-continuous if for any G € & fG) € p.

In[7]the concept of generalized quasi uniformity was introduced, termed as g-quasi uniformity.
In the same manner, we introduce the definition of g-uniformity as follows.

Definition 2.3. Let X be a non-empty set. A non-void family U, of subsets of X X Xis called a
u-uniformity on X if

(1) AcUforevery Uel,,
@ UeU,and VU eU,=V elU,
() U eU,= there exists a symmetric V €U, such that V-V C U.

The pair (X,U,,) is called a y-uniform space.

Result 2.4. Let (X,U,) be a p-uniform space, then for any U eU,,, UCU * U.

Proof. Let (x,y) € U. Then as (y,y) € Ulfrom ()], we have (x,y) € U° U, hence UC U~ U. O
Proposition 2.5. Let (X,U,) be a p-uniform space, then for any U eU,, U -1 €U,

Proof. Let U €U,,. Then by axiom (iii), there exists a symmetrlc 14 eu such that V° VcU.
Again by Resu1t2 4,V C Ve Vwhichimplies VC Uandso V-1c U} ie. VC U [since V

is symmetric]. So by axiom (i), U~ €U, O
Result 2.6. Every uniform space (X,U) is a p-uniform space.

Proof. Axioms (i) and (ii) of Definition 2.3 are obvious from the definition of uniformity given

in Definition 1.2. Now for axiom (iii) of Definition 2.3, consider U €U, then by axiom (v) of

Definition 1.2 there exists V €U such that V= V C U; we set W= V n V1. By axioms (i) and

(iv) of Definition 1.2, we see that W €U/, and it is also clear that Wis symmetric and W W C

U.Hence, (X,U) is a y-uniform space. O

Note 2.7. The converse of the above stated result is false i.e. a p-uniformity on a set X need
not be a uniformity on X. In fact, consider X = {a, b, c} and A = {(a, a), (b, b), (c,
¢), (@, b), (b, @)}, B = {(a, a), (b, D), (c, ¢), (c, b), (b, ¢)}. We set
U, ={UCXXX : ACU or BCU}. It is clear that U, is a p-uniformity on X.
But AnB = {(a, a) (b,0),(c,c)} U, which does noz‘ satisfy (i2) of Definition
1.2, and hence it is not a uniformity.

Definition 2.8. [7] Let X be a nonempty set. A nonempty family U of subsets of X X X is
called a generalized quasi uniformity (ov g-quast uniformity) on X if the
Sollowing hold:

(1) acU,vUel
@ UeUand UCV=>VelU.
©B) UeU=3Velsuchthat V-V C U



Remark 2.9. [tis a straightforward to observe that every p-uniform space is also a g-quasi
uniform space as defined in [7]. But the converse is not true.

Consider the set X = {a, b, ¢} and the subset U of X X X given by U = {(a, a), (b, b), (¢, ¢), (@, b)}.
Seti, = {VCXXX : UCV}.Itisclear that,, is a g-quasi uniformity on X. Now U € U, but
there does not exist any symmetric A € X X X1in U, such that A - A € U.Hence (X, ) is not
a p-uniform space.

So the family of all y-uniform spaces is coarser than the family of all g-quasi uniform spaces
but finer than the collection of all uniform spaces.

Theorem 2.10. Let/, be a y-uniformity on a non-empty set X. Let a family ,, of subsets of
X be defined by:
A subset G € 7, if and only if for every p € G, there exists some U, €U,
such that Uy(p) C G. Then 7, is a strong generalized topology on X.

Proof. Clearly ¢ € 7. For each p € X, Ulp) C X, for any U €U, so X € 1,,.

Let G, € 7, where @ € A, an index set. Let G = | JoeaGo and p € G. Then p € G for some
P € A, so there exists U, €U, such that U,(p) C G5 C G. Hence, G € 7,,.

So, 7,, is a strong generalized topology on X. O

Definition 2.11. The generalized topology v, obtained in the previous theorem from the
u-uniformity U, on X1s called the generalized topology on X induced by U,
and will be denoted by t(U,,).
Henceforth, the GTS (X, t(U,,)) will be called a p-uniform space.

3. p-uniformity and y-complete regularity

Definition 3.1. /2] A GTS (X, u)is said to be p-completely regular if for any u-closed set Ain X
and for x¢A, there exists a y-continuous function f : (X, u) — (R,v) such
that fix) = 0 and flA) = {1}, where v is the generalized topology on the set R
of reals generated by the base p = {(—oo,t) : t€ R}U{(,0) : t€ R}

Theorem 3.2. A p-uniformizable GTS (X, p) is y-completely regular.

Proof. Given that the GTS (X, ) is p-uniformizable, i.e. there exists a y-uniformity ¢/, on X
suchthat y = 7(U,,). Let Fbe u-closed and p & F. Thus X\ FF = W(say)is y-open and p € W, so
there exists U €U, such that Ulp) € W.

Now we shall show by induction that for every #» € NU{0}, we can construct a symmetric
member U, e, such that U, € Uand U,° U, € U,_; C U, when n is positive with U = Uj,.
In fact, let U = Uj; then there exists a symmetric U; €U, such that U, ° U; C Uy, where
Uy =U;°A Cc U °U; C U,y Let U,_1 have been constructed in this way, then there exists a
symmetric U, €U, such that U, > U, € U,,_; and similarly U, = U,,>AC U,° U, C U,,_1 C U.
So, we get a decreasing sequence {U,, : # > 0} with each member being a subset of U.

Next for every diadic rational [A diadic rational number » is of the form
F =gk 45+ + 5 = £ where p is some positive integer] » € (0, 1], we define
Vi=Uy°Uye...°U,, wherer = X7 27" with 0 <my <np <...<n,, since every diadic
rational number has unique expression, V, is well-defined. We define V;; = A, though it may
not be in U, and also note that V; = Uj. Then it can be shown that (Lemma 3.3 below)

Vig-nSVign ° Uy SV (pg1)2 (%)
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which holds for every non-negative nandallz = 0,1, ..., 2" — 1. Also for two diadic rational
numbers 7, s with 0 < 7 <'s < 1, there exists positive integer # such that» =7 - 27" and
s =7 - 27" where i, j are positive integers satisfying 0 <7 <j < 2".
Hence, we have V, = V.0 CV(;19C - CVjon = V. Thusif 0 <7 <s<landv, s are
diadic rationals then V, C V..

Next, we define a function g: X — [0, 1] by taking

_ [sup{r:x¢V,(p)}, forx#p
g(x)f{(), forx=p.
Since Vo = A, Vo(p) = {p}.Foreach x(#£p) € X, x¢Vo(p) = 0 €{r: 2V, (0)} = {r:x&V,(p)} #
¢. Also, 7 <1 = {r: x¢V,(p)} is bounded above and so its supremum exists.
Now for any point g € F, i.e.q € X\ W, we have g V1(p),as U(p) C Wand V; = U, C U. Again,
qgVip) = 1 €lr:qgV, ), r <1} = glg) = 1.
Fmally, we shall show that g is u-continuous in (X, ). For this it is enough to show that g~ 1(0, )
and g~ (¢, 1] are u-open [since[0, £), (£, 1]are the basic u-open sets of [0, 1] where £ € (0, 1), when it
is considered as a subspace of the GTS (R, v) defined previously]. Let x € g7 ([0, #)), then
2(x) €0, 1); let us take g(x) = sthens <t <1. We set » = { — s > 0, now there exists # € N such
that 2 > 2 We show that U,(x) € g (0, 2)), consequently g7 ([0, 1)) € 7(Uy,) = p.
Now let % be the uniquely determined positive integer satisfyingk —1<s - 2" <kie. (k —1)
27"<s<k- 27" thenglx) =s<k-27".Now,x & Vig-(p)=k-27" €{r:x¢ V,(p)} =
s=sup{r:x&V,(p)} >k-27" which is a contradiction. So ¥ € Vip- (p) = (p, x) € Vjg-». Also
fory € U,(x) we get (x,y) € U,. Hence, (9, y) € Vig-n ° Uy SV 1)2-1, by (@),and soy e Vier1y2 ),
and hence g(y) < (¢ + 1)27". Therefore, g(y) —s<(k+1)27" - (k=1)2" =2 <r=1{-s
ie.gW) <t = yeg '(0,1).Hence, Uy,x) C g (0, 5),s0g7'([0,1)) ez(U u) = .
Next, for g~ (¢, 1], let x € g 1((t, 1]), then g(x) = s > ¢ > 0. Let » = s — ¢t > 0 and n € N so that
2" > 2 . We shall show that U,(x) C g~ (¢, 1). Let & be the uniquely determined positive integer
sat1sfy1ng (k—127"<t<k-27" Ifpossible lety e U, ) andy&g (¢, 1). Theng(y) <t <Fk -
27"andsoy € Vio-n (p) (infact otherwise,y & Vio- (p) =g (v) > k-27"). Therefore (p,y) € Vig-n
and since y € U,W), (r, ) € U, and hence, as U, is symmetric, (y, x) € U, Thus
(0, %) € Vign° Uy SV gy 1)2-0 [by (k)] S0, £ € Vij11)2-4 (p)- Consequently, g(x) < (& + 1)27". Now
gx)—t<(k+1)27"=(k-1)27" = % < r=s—1 < r, a contradiction to the equality.
Hence U,(x) C g (¢, 1]), so g ™! ((t,1]) er(Uy,) = p. Hence, g is p-continuous and so (X, y) is
u-completely regular. O

271

Lemma 3.3. Following the same notations as in Theorem 32, the inclusion relation
V20 C V20 © Uy SV py1)2- holds for every non-negative integer n and for
k=0,1,2...,2" -1

Proof. This relation holds for #z = 0, since forn = 0,k = 0 and V, = A so that Vo Uy = Uy =
V1. Let n > 0 and we assume that the inclusions hold for # — 1. We shall prove the inclusions
for n. Since Vj.9-n = Voo ° ACV}0-02 U, is always true, it remains only to prove
Vion ° UyCV pp1yon, for k = 0,1,2, ..., 2" — 1.

Ifzisan even mteger say k = 2m, we havek 27" =©m)- 2" =m-27"Vie+1-27"
=m- -2 V42" =Qm+1)- 27"

It then follows from the definition of the sets V,, given in Theorem 3.2, that

Vies1y-20 = Viyg--n ° Uy = Vyo-n ° Uy, thus the inclusion is proved in this case.
Ifklsanoddmteger sayk 2m+1,thenk-27"=@2m+1)-2"=m 27"V 4 27"and
k+1- =@m+2- 27" (m +1) - 27*Y By our induction hypothems we get

Vio--1 ° Un 1€V g1y 2-0-0- (%)



Since U,°U, € U,_;, it implies that Vj.o-°U, = m-2-n-0 19Uy =V, o0-m-1)°
U UpCVyp9-0-1 °Uy1 and by using (%) we get Vi 2 UpCV(pi1y.0-0-0 = Vigr)aon.
Thus, the inclusion also holds for odd integers.

Remark 3.4. Itis still an open problem whether a u-completely regular GT is y-uniformizable.

4. p-uniformity and y-proximity

In a uniform space (X, i), there is a result that a uniformity always induces a proximity on X
which generates the same topology as is induced by I/ on X. In the following theorem, we also
have a similar result for a GTS. First we state the definition of y-proximity.

Definition 4.1. [2] A binary relation 8, on the power set P(X) of a set X is called a
u-proximity on X if 6, satisfies the following axioms:
(1) As,Biff Bs,A, VA, BeP(X)
@ IfAs,B, ACCandBCD, then C5,D
@) {xsixp,VreX
@) Ag,B =3 E(CX)such that A 8,E and (X \ E) 8,B.
Now &, generates a generalized topology on X which is given below:

Proposition 4.2. [2] Let a subset A of a p-proximity space (X, 6,,) be defined to be §,-closed iff
({x}8,A = x € A). Then the collection of complements of all §,-closed sets
so defined, yields a generalized topology p = t(5,) on X.

Proposition 4.3. [2] Let (X, 6,) be a p-proximity space and p = t(5,). Then the p-closure
c,(A) of a set A in (X, p) is given by c,(A) = {x: {x}5,A}.
Lemma 4.4. Let (X,U,) be a p-uniform space. Then for A, B C X, UA) n UB) # ¢, for all
Uely,if and only if UA) N B # ¢ for all U €U,

Proof. Let UA) N B # ¢. Since B € UB) (as A C U), we get UA) n UB) # ¢ for all
U eU,.Conversely, let UA) n UB) # ¢ for all U €U, and if possible let there exist V el
such that V(4) n B = ¢. Now there exists a symmetric W € U, such that W W C V. By the
given condition, W(A) N W(B) # ¢ and let p € W(A) n WI(B), ie. (@, p) € Wand (b, p) € W for
somea € A, b € B. Since Wis symmetric, we get (a, b)) € We W C V which implies b € V{a) C
V(A). Thus V(A) N B # ¢, a contradiction. O
Theorem 4.5. For a y-uniform space (X, ), the relation 6§, defined on P(X) by

A6,B if and only if for every U eU,, U(A)NU(B) # ¢
is a p-proximity structure on X such that 7(U4,,) = 7(6,).

Proof. To show that 6, is a u-proximity on X we proceed in the following manner:
(1) For A, B € X, clearly Aé,B iff B5,A.

(2) Let As,Bwith A € Cand BC D, soforany U e U, UA) n UB) # ¢. Now UA) € U(O) and
UB) € UWD), therefore U(C) n UD) # ¢. Hence C5,,D.

) Forallx € X, x € Ulx) n Uw), for all U € U, which implies Ulx) n Ulx) # ¢ for all U €U,
and so {x}6,{x}.

(4) Let A, Be P(X)such that A,B. Then for some U € U,,, UA) n UB) = ¢; we set C = U(A)
and D = U(B). It is clear that A C C. We show that Ag,(X\ O). In fact, A5,(X\ ) = for
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every V el,, VI4A) n VIX\ UA)) # ¢. Let Whe a symmetric member of 14, such that We W
C U, then W(A) n WX\ U(A)) # ¢ and so there exists p € W(A) n WX\ U(A)). Therefore,
thereexistsa € A, b € X\ U(A) such that (¢, p) € Wand (b, p) € W, now W being symmetric,
(a, b) € W W C U which implies b € Ula) C U(A), a contradiction to the fact that b € X'\
UlA). Thus Ag,(X\ O. Similarly, B € D and Bg,(X\ D), alsoas CnD = UA) n UB) = ¢,
B$,C. In fact, if B§,C then as C C (X\ D) that implies B6,(X \ D) [using (ii) in this proof
shown above], a contradiction. Thus, we see that axiom (1v) of p-proximity is satisfied.

Finally, we show that z(U,)=1(6,). Let A € X and x € X. Then
xEcy A= UXNA#¢, for all UeU,=«Ux)NUA)#¢, for all Uel, [by
Lemma 4.4] < {x}6,A @xecwmA [by Proposition 4.3]. Thus, 7(U4,) =7(5,). O

Remark 4.6. 1tis still an open problem whether a p-proximity structure 5, on a set X induces

a p-uniformity U, on X such that t(U,) = 7(5,).
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