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Abstract

Purpose – The present article deals with the initiation and study of a uniformity like notion, captioned
μ-uniformity, in the context of a generalized topological space.
Design/methodology/approach – The existence of uniformity for a completely regular topological space is
well-known, and the interrelation of this structure with a proximity is also well-studied. Using this idea, a
structure on generalized topological space has been developed, to establish the same type of compatibility in the
corresponding frameworks.
Findings – It is proved, among other things, that a μ-uniformity on a non-empty set X always induces a
generalized topology on X, which is μ-completely regular too. In the last theorem of the paper, the authors
develop a relation between μ-proximity and μ-uniformity by showing that every μ-uniformity generates a
μ-proximity, both giving the same generalized topology on the underlying set.
Originality/value – It is an original work influenced by the previous works that have been done on generalized
topological spaces. A kind of generalization has been done in this article, that has produced an intermediate
structure to the already known generalized topological spaces.
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1. Introduction and prerequisites
It was Cs�asz�ar [1] who first initiated the idea of generalized topological space. This opened up
a newdirectionwhichwas pursued bymanymathematicians toward generalizations ofmany
topological concepts to this new arena. A generalized topology (GT, for short) μ on a setX is a
collection of subsets of X such that f∈ μ and arbitrary unions of members of μ belong to μ;
and the ordered pair (X, μ) then stands for a generalized topological space (henceforth
abbreviated as GTS). The sets in μ are called μ-open sets and their complements μ-closed sets.
A GTS (X, μ) is called a strong GTS if X ∈ μ. For any subset A of a GTS (X, μ), the μ-interior
iμ(A) and μ-closure cμ(A) of A are defined in the usual way as:

iμðAÞ ¼
S

B⊆X : B⊆Af and B∈ μg and cμA ¼ T
B⊆X : A⊆Bf and Xn B∈ μg.

As is expected, μ-interior and μ-closure operators on a GTS (X, μ) obey the following basic
properties:

(1) iμ(A) ⊆ A and A ⊆ cμ(A), for all A ⊆ X.

(2) A ⊆ B ⊆ X 0 iμ(A) ⊆ iμ(B) and cμ(A) ⊆ cμ(B).
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(3) A(⊆ X) is μ-open (μ-closed) if and only if A 5 iμ(A) (resp. A 5 cμ(A)).

(4) iμ(X \ A) 5 X \ cμ(A), for all A ⊆ X.

The notion of uniformity is well-known for a topological space. This article is intended to
initiate the study of a uniformity-like structure, termed μ-uniformity, on a generalized
topological space.

In what follows in Section 2, we define μ-uniformities on a nonempty set X axiomatically
and show that such a μ-uniformity induces a generalized topology on X. Although a
μ-uniformity is not necessarily a uniformity. In Section 3, we also prove that a μ-uniform
space satisfies a sort of complete regularity condition. Finally in Section 4, we establish that
for a μ-uniform space, there exists a μ-proximity relation [2] such that the same generalized
topology originates from both the structures.

We now recall the definition of uniformity on a set and some well-known relevant results
thereof; related details may be found in [3].

Definition 1.1. Let X be a non-empty set:

(1) A non-void subset of X 3 X is called a binary relation on X.

(2) The identity relation on X is called the diagonal in X 3 X and is denoted by Δ(X) or
simply by Δ. Thus Δ 5 {(x, x) : x ∈ X}.

(3) The inverse of a relation U, denoted by U�1, is defined by U�1 5 {(y, x) : (x, y) ∈ U}.

(4) A relation U is said to be symmetric if U 5 U�1.

(5) The composition of two relations U and V, denoted by U◦V, is defined by
U◦V ¼ ðx; yÞ : ðx; zÞ∈Uf and (z, y) ∈ V, for some z∈Xg.

Definition 1.2. Let X be a non-empty set. A non-void family U of subsets of X 3 X, is said
to be a uniformity on X if the following conditions hold:

(1) Δ ⊆ U, for every U ∈U.
(2) U ;V ∈U0U∩V ∈U.
(3) U ∈U and V⊇U0V ∈U.
(4) U ∈U0U−1 ∈U.
(5) U ∈U0 there exists V ∈U such that V◦V ⊆ U.

The pair ðX ;UÞ is called a uniform space.

Definition 1.3. Let U be a binary relation onX andA a non-void subset of X. Thenwe define,
UðAÞ ¼ x∈X : ða; xÞ∈Uf , for some a∈Ag. In particular, if A5 {p}, for
some p ∈ X, then U(p) 5 U({p}) 5 {x ∈ X : (p, x) ∈ U}.

Now we state some well-known results for a uniform space ðX ;UÞ.
Result 1.4. Let U be a uniformity on a non-void set X. Let a family τ of subsets of X be defined

as follows: A subset G of X belongs to τ if and only if to every element p ∈ G, there
corresponds some Up ∈U such that Up(p) ⊆ G. Then τ is a topology on X.

Definition 1.5. [4] If ðX ;UÞ is a uniform space the topology τðUÞ of the uniformity U, or the
uniform topology, is the family of all subsets G of X such that for each x in G
there is U in U such that U(x) ⊆ G.

Result 1.6. A topological space (X, τ) is uniformizable if and only if it is completely regular.
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2. μ-uniformity
Before going into the details we first state two definitions which will be required later on.

Definition 2.1. [5] Let X be a non-empty set and β⊆PðXÞ. Then β is called a base for a
generalized topology μ on X if μ 5 {∪β0 : β0 ⊆ β}.

Definition 2.2. [6] Let (X, μ) and (Y, ξ) be two generalized topological spaces. A function f : (X,
μ) → (Y, ξ) is said to be μ-continuous if for any G ∈ ξ, f�1(G) ∈ μ.

In [7] the concept of generalized quasi uniformitywas introduced, termed as g-quasi uniformity.
In the same manner, we introduce the definition of μ-uniformity as follows.

Definition 2.3. Let X be a non-empty set. A non-void familyUμ of subsets of X3X is called a
μ-uniformity on X if

(1) Δ ⊆ U for every U ∈Uμ,

(2) U ∈Uμ and V⊇U ∈Uμ0V ∈Uμ,

(3) U ∈Uμ0 there exists a symmetric V ∈Uμ such that V◦V ⊆ U.

The pair ðX ;UμÞ is called a μ-uniform space.

Result 2.4. Let ðX ;UμÞ be a μ-uniform space, then for any U ∈Uμ;U⊆U◦U.

Proof. Let (x, y) ∈ U. Then as (y, y) ∈ U[from (i)], we have (x, y) ∈ U◦U, hence U ⊆ U◦U.,

Proposition 2.5. Let ðX ;UμÞ be a μ-uniform space, then for any U ∈Uμ;U
−1 ∈Uμ.

Proof. Let U ∈Uμ. Then by axiom (iii), there exists a symmetric V ∈Uμ such that V◦V ⊆ U.
Again by Result 2.4,V⊆V◦Vwhich impliesV⊆U and soV�1⊆U�1, i.e.V⊆U�1 [sinceV
is symmetric]. So by axiom (ii), U−1 ∈Uμ. ,

Result 2.6. Every uniform space ðX ;UÞ is a μ-uniform space.

Proof.Axioms (i) and (ii) of Definition 2.3 are obvious from the definition of uniformity given
in Definition 1.2. Now for axiom (iii) of Definition 2.3, consider U ∈U, then by axiom (v) of
Definition 1.2 there existsV ∈U such thatV◦V⊆U; we setW5V ∩V�1. By axioms (ii) and
(iv) of Definition 1.2, we see thatW ∈U , and it is also clear thatW is symmetric andW◦W⊆
U. Hence, ðX ;UÞ is a μ-uniform space. ,

Note 2.7. The converse of the above stated result is false i.e. a μ-uniformity on a set X need
not be a uniformity on X. In fact, consider X5 {a, b, c} and A5 {(a, a), (b, b), (c,
c), (a, b), (b, a)}, B 5 {(a, a), (b, b), (c, c), (c, b), (b, c)}. We set
Uμ ¼ U⊆X3X : A⊆Uf or B⊆Ug. It is clear that Uμ is a μ-uniformity on X.
But A∩B ¼ fða; aÞ; ðb; bÞ; ðc; cÞg∉Uμ, which does not satisfy (ii) of Definition
1.2, and hence it is not a uniformity.

Definition 2.8. [7] Let X be a nonempty set. A nonempty family U of subsets of X 3 X is
called a generalized quasi uniformity (or g-quasi uniformity) on X if the
following hold:

(1) Δ⊆U ; ∀U ∈U.
(2) U ∈U and U⊆V0V ∈U.
(3) U ∈U0∃V ∈U such that V◦V ⊆ U.
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Remark 2.9. It is a straightforward to observe that every μ-uniform space is also a g-quasi
uniform space as defined in [7]. But the converse is not true.

Consider the setX5 {a, b, c} and the subsetU ofX3X given byU5 {(a, a), (b, b), (c, c), (a, b)}.
SetUμ ¼ fV ⊆X3X : U⊆Vg. It is clear thatUμ is a g-quasi uniformity onX. NowU ∈Uμ but
there does not exist any symmetricA⊆X3X in Uμ such thatA◦A⊆U. Hence ðX ;UμÞ is not
a μ-uniform space.
So the family of all μ-uniform spaces is coarser than the family of all g-quasi uniform spaces
but finer than the collection of all uniform spaces.

Theorem2.10. LetUμ be a μ-uniformity on a non-empty setX. Let a family τμ of subsets of
X be defined by:
A subset G ∈ τμ if and only if for every p ∈ G, there exists some Up ∈Uμ

such that Up(p) ⊆ G. Then τμ is a strong generalized topology on X.

Proof. Clearly f ∈ τμ. For each p ∈ X, U(p) ⊆ X, for any U ∈Uμ so X ∈ τμ.
Let Gα ∈ τμ, where α ∈ Λ, an index set. Let G5

S
α∈ΛGα and p ∈ G. Then p ∈ Gβ for some

β ∈ Λ, so there exists Up ∈Uμ such that Up(p) ⊆ Gβ ⊆ G. Hence, G ∈ τμ.
So, τμ is a strong generalized topology on X. ,

Definition 2.11. The generalized topology τμ obtained in the previous theorem from the
μ-uniformity Uμ on X is called the generalized topology on X induced by Uμ
and will be denoted by τðUμÞ.
Henceforth, the GTS ðX ; τðUμÞÞ will be called a μ-uniform space.

3. μ-uniformity and μ-complete regularity

Definition 3.1. [2] A GTS (X, μ) is said to be μ-completely regular if for any μ-closed set A inX
and for x∉A, there exists a μ-continuous function f : ðX ; μÞ→ ðR; νÞ such
that f(x)5 0 and f(A)5 {1}, where ν is the generalized topology on the set R
of reals generated by the base β ¼ fð−∞; tÞ : t ∈Rg∪fðt;∞Þ : t ∈Rg.

Theorem 3.2. A μ-uniformizable GTS (X, μ) is μ-completely regular.

Proof. Given that the GTS (X, μ) is μ-uniformizable, i.e. there exists a μ-uniformity Uμ on X
such that μ ¼ τðUμÞ. Let F be μ-closed and p∉ F. ThusX \ F5W(say) is μ-open and p∈W, so
there exists U ∈Uμ such that U(p) ⊆ W.
Now we shall show by induction that for every n∈N∪f0g, we can construct a symmetric
member Un ∈Uμ such thatUn ⊆ U and Un◦Un ⊆ Un�1 ⊆ U, when n is positive with U5U0.
In fact, let U 5 U0; then there exists a symmetric U1 ∈Uμ such that U1◦U1 ⊆ U0, where
U1 5 U1◦Δ ⊆ U1◦U1 ⊆ U0. Let Un�1 have been constructed in this way, then there exists a
symmetricUn ∈Uμ such thatUn◦Un⊆Un�1 and similarlyUn5Un◦Δ⊆Un◦Un⊆Un�1⊆U.
So, we get a decreasing sequence {Un : n ≥ 0} with each member being a subset of U.
Next for every diadic rational [A diadic rational number r is of the form
r ¼ 1

2n1 þ 1
2n2 þ � � � þ 1

2nm ¼ p
2nm , where p is some positive integer] r ∈ (0, 1], we define

Vr ¼ Un1◦Un2◦ . . .◦Unm, where r ¼ Σm
i¼12

−ni with 0 ≤ n1 < n2 < . . . < nm; since every diadic
rational number has unique expression, Vr is well-defined. We define V05Δ, though it may
not be in Uμ and also note that V1 5 U0. Then it can be shown that (Lemma 3.3 below)

Vk2−n⊆Vk2−n◦Un⊆Vðkþ1Þ2−n . . .(+)
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which holds for every non-negative n and all k5 0, 1, . . ., 2n� 1. Also for two diadic rational
numbers r, s with 0 ≤ r ≤ s ≤ 1, there exists positive integer n such that r5 i $ 2�n and
s 5 j $ 2�n, where i, j are positive integers satisfying 0 ≤ i ≤ j ≤ 2n.
Hence, we have Vr ¼ Vi$2−n⊆Vðiþ1Þ2−n⊆ � � �⊆Vj$2−n ¼ Vs. Thus if 0 ≤ r ≤ s ≤ 1 and r, s are
diadic rationals then Vr ⊆ Vs.

Next, we define a function g: X → [0, 1] by taking

gðxÞ ¼ supfr : x∉VrðpÞg; for x≠ p

0; for x ¼ p :

�

SinceV05Δ,V0(p)5 {p}. For each x(≠ p)∈X, x∉V0(p)0 0∈{r : x∉Vr(p)}0{r : x∉Vr(p)}≠
f. Also, r ≤ 1 0{r : x∉Vr(p)} is bounded above and so its supremum exists.
Now for any point q∈ F, i.e. q∈X \W, we have q∉V1(p), asU(p)⊆W andV15U0⊆U. Again,
q∉V1(p) 0 1 ∈{r : q∉Vr(p), r ≤ 1}0 g(q) 5 1.
Finally,we shall show that g isμ-continuous in (X, μ). For this it is enough to show that g�1([0, t))
and g�1((t, 1]) areμ-open [since [0, t), (t, 1] are the basicμ-open sets of [0, 1] where t∈ (0, 1), when it
is considered as a subspace of the GTS ðR; νÞ defined previously]. Let x ∈ g�1([0, t)), then
g(x)∈ [0, t); let us take g(x)5 s then s< t≤ 1. We set r5 t� s> 0, now there exists n∈N such
that 2n > 2

r
. We show that Un(x) ⊆ g�1([0, t)), consequently g−1ð½0; tÞÞ∈ τðUμÞ ¼ μ.

Now let k be the uniquely determined positive integer satisfying k� 1 ≤ s $ 2n < k i.e. (k� 1)
2�n

≤ s < k $ 2�n, then g(x) 5 s < k $ 2�n. Now, x∉Vk2−nðpÞ0k$2−n ∈ fr : x∉ VrðpÞg0
s ¼ sup fr : x∉VrðpÞg≥ k$2−n, which is a contradiction. So x∈Vk2−nðpÞ0ðp; xÞ∈Vk2−n. Also
for y∈Un(x) we get (x, y)∈Un. Hence, ðp; yÞ∈Vk2−n◦Un⊆Vðkþ1Þ2−n, by (a), and so y∈Vðkþ1Þ2−nðpÞ,
and hence g(y) ≤ (k þ 1)2�n. Therefore, gðyÞ− s≤ ðkþ 1Þ2−n − ðk− 1Þ2−n ¼ 2

2n < r ¼ t − s

i.e. g(y) < t0 y ∈ g�1([0, t)). Hence, Un(x) ⊆ g�1([0, t)), so g−1ð½0; tÞÞ∈ τðUμÞ ¼ μ.
Next, for g�1((t, 1]), let x ∈ g�1((t, 1]), then g(x)5 s > t ≥ 0. Let r5 s� t > 0 and n∈N so that
2n > 2

r
. We shall show thatUn(x)⊆ g�1((t, 1]). Let k be the uniquely determined positive integer

satisfying (k� 1)2�n
≤ t< k $ 2�n. If possible, let y∈Un(x) and y∉g�1((t, 1]). Then g(y)≤ t< k $

2�n and so y∈Vk2−nðpÞ (in fact otherwise, y∉Vk2−nðpÞ0gðyÞ≥ k$2−n). Therefore ðp; yÞ∈Vk2−n

and since y ∈ Un(x), (x, y) ∈ Un and hence, as Un is symmetric, (y, x) ∈ Un. Thus
ðp; xÞ∈Vk2−n◦Un⊆Vðkþ1Þ2−n [by (+)]. So, x∈Vðkþ1Þ2−nðpÞ. Consequently, g(x)≤ (kþ 1)2�n. Now

gðxÞ− t ≤ ðkþ 1Þ2−n − ðk− 1Þ2−n ¼ 2
2n < r0s− t < r, a contradiction to the equality.

Hence Un(x) ⊆ g�1((t, 1]), so g−1ððt; 1�Þ∈ τðUμÞ ¼ μ. Hence, g is μ-continuous and so (X, μ) is
μ-completely regular. ,

Lemma 3.3. Following the same notations as in Theorem 3.2, the inclusion relation
Vk$2−n⊆Vk$2−n◦Un⊆Vðkþ1Þ2−n holds for every non-negative integer n and for

k 5 0, 1, 2, . . ., 2n � 1.

Proof. This relation holds for n5 0, since for n5 0, k5 0 andV05Δ so thatV0◦U05U05
V1. Let n > 0 and we assume that the inclusions hold for n� 1. We shall prove the inclusions
for n. Since Vk$2−n ¼ Vk$2−n◦Δ⊆Vk$2−n◦Un is always true, it remains only to prove
Vk$2−n◦Un⊆Vðkþ1Þ2−n, for k 5 0, 1, 2, . . ., 2n � 1.
If k is an even integer, say k5 2m, we have k $ 2�n5 (2m) $ 2�n5m $ 2�(n�1), i.e. (kþ 1) $ 2�n

5 m $ 2�(n�1) þ 2�n 5 (2m þ 1) $ 2�n.
It then follows from the definition of the sets Vr, given in Theorem 3.2, that
Vðkþ1Þ$2−n ¼ Vm$2−ðn− 1Þ◦Un ¼ Vk$2−n◦Un, thus the inclusion is proved in this case.
If k is an odd integer, say k5 2mþ 1, then k $ 2�n5 (2mþ 1) $ 2�n5m $ 2�(n�1)þ 2�n and
(k þ 1) $ 2�n 5 (2m þ 2) $ 2�n 5 (m þ 1) $ 2�(n�1). By our induction hypothesis, we get
Vm$2−ðn− 1Þ◦Un−1⊆Vðmþ1Þ$2−ðn− 1Þ. . . .(*)
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Since Un◦Un ⊆ Un�1, it implies that Vk$2−n◦Un ¼ Vm$2−ðn− 1Þþ2−n◦Un ¼ Vm$2−ðn− 1Þ◦
Un◦Un⊆Vm$2−ðn− 1Þ◦Un−1 and by using (*) we get Vk$2−n◦Un⊆Vðmþ1Þ$2−ðn− 1Þ ¼ Vðkþ1Þ$2−n.
Thus, the inclusion also holds for odd integers. ,

Remark3.4. It is still an open problemwhether a μ-completely regular GT is μ-uniformizable.

4. μ-uniformity and μ-proximity
In a uniform space ðX ;UÞ, there is a result that a uniformity always induces a proximity onX
which generates the same topology as is induced byU onX. In the following theorem, we also
have a similar result for a GTS. First we state the definition of μ-proximity.

Definition 4.1. [2] A binary relation δμ on the power set PðXÞ of a set X is called a
μ-proximity on X if δμ satisfies the following axioms:

(1) AδμB iff BδμA; ∀A;B∈PðXÞ
(2) If AδμB, A ⊆ C and B ⊆ D, then CδμD

(3) {x}δμ{x}, ∀x ∈ X

(4) A δ∕μB 0∃ E(⊆ X) such that A δ∕μE and (X \ E) δ∕μB.

Now δμ generates a generalized topology on X which is given below:

Proposition 4.2. [2] Let a subset A of a μ-proximity space (X, δμ) be defined to be δμ-closed iff
({x}δμA0 x ∈A). Then the collection of complements of all δμ-closed sets
so defined, yields a generalized topology μ 5 τ(δμ) on X.

Proposition 4.3. [2] Let (X, δμ) be a μ-proximity space and μ 5 τ(δμ). Then the μ-closure
cμ(A) of a set A in (X, μ) is given by cμ(A) 5 {x : {x}δμA}.

Lemma 4.4. Let ðX ;UμÞ be a μ-uniform space. Then for A, B ⊆ X, U(A) ∩ U(B) ≠ f, for all
U ∈Uμ if and only if U(A) ∩ B ≠ f for all U ∈Uμ.

Proof. Let U(A) ∩ B ≠ f. Since B ⊆ U(B) (as Δ ⊆ U), we get U(A) ∩ U(B) ≠ f for all
U ∈Uμ.Conversely, let U(A) ∩ U(B) ≠ f for all U ∈Uμ and if possible let there exist V ∈Uμ

such that V(A) ∩ B5 f. Now there exists a symmetricW ∈Uμ such thatW◦W ⊆ V. By the
given condition,W(A) ∩W(B) ≠ f and let p ∈W(A) ∩W(B), i.e. (a, p) ∈W and (b, p) ∈W for
some a ∈ A, b ∈ B. SinceW is symmetric, we get (a, b) ∈W◦W ⊆ Vwhich implies b ∈ V(a) ⊆
V(A). Thus V(A) ∩ B ≠ f, a contradiction. ,

Theorem 4.5. For a μ-uniform space ðX ;UμÞ, the relation δμ defined on PðXÞ by
AδμB if and only if for every U ∈Uμ;UðAÞ∩UðBÞ≠f

is a μ-proximity structure on X such that τðUμÞ ¼ τðδμÞ.
Proof. To show that δμ is a μ-proximity on X we proceed in the following manner:

(1) For A, B ⊆ X, clearly AδμB iff BδμA.

(2) LetAδμBwithA⊆ C andB⊆D, so for anyU ∈Uμ,U(A)∩U(B)≠f. NowU(A)⊆U(C) and
U(B) ⊆ U(D), therefore U(C) ∩ U(D) ≠ f. Hence CδμD.

(3) For all x ∈ X, x ∈ U(x) ∩ U(x), for all U ∈Uμ which implies U(x) ∩ U(x) ≠ f for all U ∈Uμ
and so {x}δμ{x}.

(4) LetA;B∈PðXÞsuch thatAδ=μB. Then for someU ∈Uμ,U(A)∩U(B)5f; we setC5U(A)
and D 5 U(B). It is clear that A ⊆ C. We show that Aδ=μ(X \ C). In fact, Aδμ(X \ C) 0 for
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everyV ∈Uμ,V(A)∩V(X \U(A))≠f. LetW be a symmetricmember ofUμ such thatW◦W
⊆ U, thenW(A) ∩W(X \U(A)) ≠ f and so there exists p ∈W(A) ∩W(X \U(A)). Therefore,
there exists a∈A, b∈X \U(A) such that (a, p)∈W and (b, p)∈W, nowW being symmetric,
(a, b) ∈W◦W ⊆ U which implies b ∈ U(a) ⊆ U(A), a contradiction to the fact that b ∈ X \
U(A). Thus Aδ=μ(X \ C). Similarly, B ⊆ D and Bδ=μ(X \ D), also as C ∩ D5 U(A) ∩ U(B)5 f,
Bδ=μC. In fact, if BδμC then as C ⊆ (X \ D) that implies Bδμ(X \ D) [using (ii) in this proof
shown above], a contradiction. Thus, we see that axiom (iv) of μ-proximity is satisfied.
Finally, we show that τðUμÞ ¼ τðδμÞ. Let A ⊆ X and x ∈ X . Then
x∈ cτðUμÞA5UðxÞ∩A≠f, for all U ∈Uμ5UðxÞ∩UðAÞ≠f, for all U ∈Uμ [by

Lemma 4.4] 5fxgδμA5x∈ cτðδμÞA [by Proposition 4.3]. Thus, τðUμÞ ¼ τðδμÞ. ,

Remark 4.6. It is still an open problem whether a μ-proximity structure δμ on a set X induces
a μ-uniformity Uμ on X such that τðUμÞ ¼ τðδμÞ.
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