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Abstract

Purpose — This study aims to use new formula derived based on the shifted Jacobi functions have been defined
and some theorems of the left- and right-sided fractional derivative for them have been presented.
Design/methodology/approach — In this article, the authors apply the method of lines (MOL) together with
the pseudospectral method for solving space-time partial differential equations with space left- and right-sided
fractional derivative (SFPDEs). Then, using the collocation nodes to reduce the SFPDEs to the system of
ordinary differential equations, which can be solved by the ode45 MATLAB toolbox.

Findings — Applying the MOL method together with the pseudospectral discretization method converts
the space-dependent on fractional partial differential equations to the system of ordinary differential equations.
Originality/value — This paper contributes to gain choosing the shifted Jacobi functions basis with special
parameters @, b and give the authors this opportunity to obtain the left- and right-sided fractional
differentiation matrices for this basis exactly. The results of the examples are presented in this article.
The authors found that the method is efficient and provides accurate results, and the authors found significant
implications for success in the science, technology, engineering and mathematics domain.
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1. Introduction

The recent development in the last few decades has shown that most of the complex system in

engineering and other several phenomena can be accurately modeled using partial

differential equations with fractional order. This contributed to a great development in

several areas such as biotechnology, chemistry, signal and image processing, finance and

many others [1-5]. The main aim of this paper is to introduce an efficient numerical method to
I‘ approximate the fractional partial differential equation (FPDE) of the form

_ © Mushtaq Ali, Mohammed Almoaeet and Basim Karim Albuohimad. Published in Arab Journal of
Arab Jounal of Mathematical Mathematical Sciences. Published by Emerald Publishing Limited. This article is published under the

Sciences

Val. 28 No. 2, 2022 Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and
Iﬁ:},);,e‘mm Publishing Limited create derivative works of this article (for both commercial and non-commercial purposes), subject to full
cISSN: 20889214 attribution to the original publication and authors. The full terms of this licence may be seen at http://

pISSN: 13195166 . X
DOI 101108/A]MS-02:2021-0052  creativecommons.org/licences/by/4.0/legalcode


http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/AJMS-02-2021-0052

du(x,t)

T s(x, 1) + ¢y (2, D u(x, £) + c_ (%, )X Dlu(x, 1), @

we also assume the initial and Dirichlet boundary conditions:
u(x,0) = F(x), @
u(0,1) = u(t,t) =0, 6))

on the domain of space 0 < x </and time 0 < f < T, and we consider that the parameter a is the
fractional order where 1 < a < 2. And a source or sink term is the function s(x, ¢). The functions
¢, (v,t)>0and c_(x, t)) > Orepresented the interpreted as transport-related coefficients or the
advection, and the diffusion coefficients.

Many approximation methods in the numerical analysis have been a survey to solve
space-dependent on fractional partial differential equations (SFPDESs), and the target of the
main subject of these methods in terms of convergence to real solutions, the stability of
methods, and order of accuracy and value of error.

One of the best types of methods for solving SFPDEs numerically is by discretization of
the space variable without the time variable. These kinds of method are referred to as method
of lines (MOL). In this method, the spatial dimensions of the space variable can be discretized
by using diverse techniques such as mesh methods, or meshless methods [6-12]. In general,
these methods convert the SFPDEs to a system of ordinary differential equations, or
differential-algebraic equations based on the type of boundary conditions [13]. There are
many types of partial differential problems that have been solved by the MOL, we refer to[7,
10, 14-19], and therein. Also, many different methods have been discussed for SFPDESs, we
refer to [20-24], and therein.

Our target of this work is to use the advantage of the pseudospectral method based on the
shifted Jacobi functions together with MOL and employed the collocation method to
approximate the solution to the SFPDE (1)—(3).

The structure of this paper was arranged in the following way: In Section 2, preliminaries,
the definitions of fractional derivatives and some notations of Jacobi—Gauss (JG) nodes. In
Section 3, the new numerical technique for solving SFPDE (1)—(3) is presented. In Section 4,
the illustrative examples were included to demonstrate the validity and applicability of the
proposed method. In Section 5, a brief conclusion and some remarks.

2. Preliminaries and definitions
We introduce several important basic definitions and properties of fractional Riemann—
Liouville integrals and derivatives and JG nodes.

Definition 2.1. (Left and right Riemann-Liouville fractional integral).

Let « is real number where 0 < a <1 and g: I — R is a continuous function and where the
bounded interval I = [, b], then the left and right Riemann—Liouville fractional integrals of
order a are defined as:

RItg(x) = % / Ck—pedt,  xel,

L )/b (t—x)'g(t)dt, «xel,

flgg(x) = W

respectively.
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Definition 2.2. (Left and right Riemann-Liouville fractional derivative).

If n — 1 < @ < such that » is a positive integer number and the continuous function g: [/ — R
then the left and right Riemann-Liouville fractional derivatives of order a are defined by:

n 1 d n

a _ d Ry(n—a) _
ang(x) - dx“ aIx g(x) - F(?’l _ a) dx”

/ (x — 1y g(t)dt,

a

b

L e 1y @
i) = (-1 G 1 ete) = 0D [ et

X

We can verify that the following properties hold true.

i o) = Do,

and
X r__ F(?’ + 1) r—a
Db —x) = m(b -x)

where 7 is any real number. For more information see [25-28].
Definition 2.3. The fractional Riesz operator of the order « is defined as [29]:
d” -1
o|x|” u(x) = 2cos (%) (

oDlu(x) + , Diu(x)),
where x belongs to the finite interval 0 < x </and# — 1 < a <z such that a # 1.

2.1 Jacobi—Gauss nodes ,
The Jacobi polynomials P;”’ ) (x) have been applied in a wide range of engineering disciplines
and used in system analysis, optimal control, numerical analysis, signal analysis for

representation solution of problems [26]. The basis {P](a~b> (%) }Z 0 @ b> -1, xe[-1,1]are
orthogonal with respect to weight function w®’(x) = (1 — %1 + x)° as follows:

1
/ 1 P ()P (@)D (£)de = s, W
where
b 2a+b+1r(f +a+1DIG+b+1) 6
BTG ta bt ATt at bt 1)
The JG quadrature formula
1 n—-1
[ gwurt@ar =Y g, ©
-1 =0

is exact for any polynomials g € Ps,,_; = span{l, 7,...77} }, where



(ab) 2"*“11"(% +a+ l)r(n + b + 1)
w; ’ - ’ bl
W+ a+0+1)(1 - P") (1)
and 7o, 71, ..., 7,1 are the JG nodes to zeros of the classical Jacobi polynomials Pff’b) (),
see [26].

According to the definition of Jacobi polynomials, various types of functions with
fractional order have been constructed based on them. For more information see [26].
We insert some properties of the classical Jacobi polynomials in the following:

_ k+a+b k+a
(a.b-1) 1) — (a.b) _ (a.b) _ 7
B @u=1) 2/’e+a+bp’e (2u—1) "% ta +bP’€—1 (2u—1), @

_ k+a+b k+b
(a-1,) 1 (a.b) T (a.h) _ 3
P @u=1) 2k +a+ 5l (2u—1) 2k +a+ 5l (2u—1). ®

And the following theorem plays a cornerstone to establish our proposed method.

Theorem 1. Leta, @, b are real numbers with conditions — 1 <b—a<band —1>a,b>0.
Then for all x belong to the interval [0, 1] we have:

Ry [xbplga.b) (2x - 1)} . Tk+b+1)

k+b—a+1) A e ), ©

It is clear from combined properties and theorems that have been inserted as it hold the proof
of theorem in References [30-32]. And there are many applications of the above theorem that
can be found in References [33-40].

3. Th presented pseudospectral discretization method

The important step of our method includes to discretize the space variable of the unknown
function u(x, ¢) that appears in SFPDE (1)—(3). To get started, we use the pseudospectral
method based on the shifted Jacobi function of the parameters @ = 1, b = 1, together with the
collocation JG nodes. Let the domain space of the function u(x, f) belongs to the interval [0, 1],
then the JG nodes will be correspondent to the interval [0, 1] as:

=L/ an -
Tl-—é(’[l- +1>, 1=1,...,n. (10)
Let us begin to approximate the unknown function u(x, £) by #,(x, t) as follows:
(x,8) = Y ai(t)es(x), (1)
7=0
where
x(1—x)

qu(x)=,mé](x), xE(O,l), (12)

such that ¢(#),7 = 1, 2,3, ..., n, are the Lagrange basis polynomials based on the JG nodes
{7}, then:
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From the Kronecker properties in the JG nodes, the ¢;(x) and ¢;(f) are satisfied as follows:

172 v v O f i#) .
‘P/(Ti)_éj(ri)_ 1 lf ZI] ) ]—1,2,3-..,%. (14)
~(ab . .
Let us denote the shifted Jacobi polynomials P;ea ) (t),k=0,1,...,n which can be written as:

B =Pt —1), k=0,1,2,3,....n

Since the degree of polynomial ¢;(x) is 2 — 1. Then, the expansion of £;(x) in terms of the shifted

~(11 .
Jacobi polynomials P,ifl) (%), k=1, ..., n, can be written as follows:

6@ =S TP (). (15
k=1

Now, by multiplying both sides of Eqn (15) by x(1 — x)f’,(el_i) (x), and using the orthogonality
property (4) to the shifted Jacobi polynomials in the interval (0, 1), get that

k) [ 0
x]-,zz(*kii(l*) /0 x(1— x)6(0)PLY (x) dt. (16)

By using the JG quadrature rule (6), and then using the Kronecker property (14), we get

2 @R+ 3)(k+2) §~ 4, = 50

ﬂj}e-—T Zzl: ' (@) Py (7).

> _(2R+3)(k+2) a1 30D
1

Uik -—T w; b (?z) 17)

By using above Eqn (17), then we can define ¢;(f) as:

¢(x) = Z@k 0Py (1), 8)

where

@k+3)(k+2) o Sy

A= Pl 1-%) P, | (7;), where j=1,2,3,. 19)

Now dependent on the fact of Eqns (19), (18), (15) and (11) the approximation of the function
u(x, t) is complete. Also we can write %72" (,t) as follows:

iy (%,1) iézk(t)%(ﬁc). (20)
k=0



Similarly, we approximate the initial and boundary conditions as follows:
u(x,0) = i1, (x,0) = Zak(o @(x) = F(x), 1)

w(0,1) = it,(0, £) = 0, (L, £) = iy (£, ) = 0. 22)

By substituting the approximations functions (20), (21) and (22) into the problems (1)—(3), we
get:

Z a(1)g;(x

Let rf ,1=20,2,3,...,n be the zeros of Pn +1( ). By using collocating nodes at

X = T( ,1=0, 1,2,3, ...,n the above Eqn (23), will change to the system of algebra
equatlons dependent on the time variable:

n

. 1.1 1,
> 4 (rY) = s(@ ) + e
7j=0

—sxt)+c+xt2a] oDlgi(x) +c- tha] Digi(x). (23

Jj=0

Z D“go] 7;)a;(t

1)) Dl (@a(t) 24)
=
In general, Eqn (24) can be rewritten in the following matrix form:
Pa(t) = s(f) + C.(1)[D. a(t)] + C_(#)[D- a()], (25)
where
eo(m ) eo(m™) eo(T)
ei(m”) o) o1 ()
P - I
NG BN () eu(V)
and
w) S, dy dy .. d
a (1) st 9 4y dy ... dy,
a(t) = . ,S(t) = . aD+ = . )
a(?) Sz, ) diy d d;,
dy dy .- dy,
dy dy ... d,
D_= ;
d, d, ... a,

C.(t)= d1agnol(c+(10 1), e (z 11)71‘),...,c+(rf}=1>,t))and
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C_(t) = diagnol (c,(rél‘n, £),c. (& 8), .. e (7, t)) .

n

(L)
i

> a4(0)g, (e =f(z"), i=0,1,2,3...n,
j=0

Collocating the initial condition 1) atx =7, 7, 1 =0,1,2,3,...,n, then we get:

or
Pa(0) =F,

where the vector F = [Pz, F(z™), ..., F(z0)]" and a(0) = [ao(0), 1 (0), a(0), ...,

a,(0)] T Inthe final result, the main problems (1)—(3) will be reduced to the following system of
ODEs with initial conditions:

Pa(f) = s(?) + C,()[D; a(t)] + C_(H)[D- a()], (262)

Pa(0) = F. (26b)

3.1 On the derivation of the left and right fractional differentiation matrices

The coefficients d;: and d;;, appear in the system of Eqn (25), we need to compute them
accurately and efficiently. In the following, we present an efficient method to compute the
coefficients d;-’ and dj;. Itis interesting to point out that, we choose ¢;(x) as the basis functions
in the pseudospectral method. The best feature of these bases is that, we can obtain a closed
form of the left and right fractional derivatives, by the use of the next two theorems 2 and 3,

which may simplify the discretization stage.

Theorem 2. The left fractional differentiation matrix DY = [d}}] can be obtained as the
element of it in the explicit form as follows:

n
df=,Dig;(T) =Y A &u(@),
k=1

and
_ TA+k) o puera o T(k+2) k+2 , s0te2w,
GO mToat e W gt e @
r'k+1) k Z_aﬁ}(el-;a,Z—a) 2,

Tktl—a) 2kl ' *
where 7; are the shifted JG nodes defined in Eqn. (10).
Proof. Depending on the fact we get in Eqn (19), we have

. n ~11)
DD = S Ty D" ((1 P <x>)7 @
k=1



~(1,1 . . . . .
where P,i_l) (x) = P,(?EP (2x — 1) is the shifted Jacobi polynomial, and by using the property (7)
with special parameters ¢ = 1 and b = 2 gives

~(1,1) (1,1) 1)
(1 —x)xPyy (x) _xpk p (v )_xdpk 1( )

~(11) k+2 :
=Py, (x) — %1 Zpk— ( ) — mxzpk-z (x).

Using the above equation and Theorem 1, we get

. ~(L1) _ Te+1) _ptal-a)
i 0P W) = ey P
rk+2) k+2 2a ﬁ(1+a,2—a) rk+1) k Z_aﬁ(naz-a)

Thiz-a2ii1” = O oo gmers e @

By substituting the above equation in (27), with using the nodes 7;,7 = 1,2, 3, . . ., n, the proof
of theorem is complete. A

Theorem 2. The right fractional differentiation matrix D? = [d};] can be obtained as the
element of it in the explicit form as:

dj = ,Di¢;(T;) Zijk G(1—7), 28)
where
rk+1) k 2 aPli;aZ a) ).

Tktl—a)2kt1

Proof. Depending on the fact we get it in Eqn (19), and by using property (8) for the special
parameter ¢ = 2 and b = 1, we obtain:

~(11) ~(11) PONGRY
1 =x)Ppy (0) =1 =2)P,y (x) = (1= 2)"P; (x)

k

~(11) k+2 ~(2.1) ~(2.1)
(1- x)ZPH (x) — m(l - x)zpk—z (x).

=1-x)P,, (x) %1

Now, combining Theorem 1 with the above equation, we obtain:

~(1,1 k g1 l+a
Dr(a=np ) =t e 0 - R

~(2-a,1+a) ~(2-a,1+a)

PE2) 2 (] )P ap}e ) (x)—l_r(ﬂ A (1—x)" “P (x) = &1 —x).

T T(kt2—a) 2%+1 (Ftl—a) Ze+1

By substituting the nodes 7,7 = 1, 2, 3, . . ., # in the above equation, the proof of theorem is
complete. A
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The inverse of matrix P in the explicit form can be found by using the next theorem.

Theorem 3. The element of the matrix P can be written in the explicit form as follows:
(11)
w

-1 _ S ~(1,1) (1,1) s
(P )SJ. = 17‘21‘1)(1 - r§1’1>)Pj (D), 5,7 =0,1,...,n, (29)
where w(M, s =0,1,2,...,n are the JG weights with respect to the weight function
w0 = x1 — x) on [0, 1]
Proof: Start the proof by noting the fact that:
1
/ K1 — Dp P02t — 1)PM (2t — )dr = 6y, j k=01, (30)
0

On the other hand, we can approximate the above integral by using the JG quadrature rule
with respect to the weight function #1 — #) on [0, 1] as follows:

1 n
/ {1 — 0p, P02t — DPMY (2t — 1) dt = S w0, Py
0

s=0

B ), @D

] N

7,k =0,1,...,ntoreach the mass matrix P, we can rewrite the above equation as:

1 n oo (1,1)
, : w) ~(11)
/ t1—Op Py 2t =) 2 = 1)dt =) () @),
0 s=0 Ts (1 - T )
32)
7,k =0,1, ... n Comparing the left sides of (3.3) and (32), yields:

N w(bY (1) .
ka(Tgl’l))WPJ’ (T\SLI)) =0y, 1,k=0,1,...,n 33)
=0 Ts (1 — Ts )

Thus by rewriting the above equation in the matrix form, we have:
PP!=1 (34)
which concludes the proof. A

The above theorem shows that the matrix P is nonsingular, and we can rewrite the implicit
initial value problem (26) to the following explicit initial value problem:

a(t) =P7's(t) + P7'[C,(1)D, + C_(1)D_]a(?), (35)

a(0)=P'F. (35b)

It should be noted that the IVP (35) can be solved by various well-known software. We solve
this IVP by the ode45 MATLAB toolbox. In the next section, we provide some numerical
examples to check the efficiency of the proposed method.



4. Numerical results and comparisons

Our goal to solve problems (1)—(3) and find the unknown function «(x, ), by approximate the
space variables via pseudospectral method based on JG nodes, and then solving the new IVP
by the ode45 MATLAB toolbox. We will begin in the first step by transforming interval (0, £)
to interval [0, 1], where the function u(x, f) defined on the interval x € (0, £), ¢ € (0, 7), and the
collocation points {z;,¢ = 0,1,2, .. .,m} belong to the interval[—1, 1], then x = % [(0)z; + () are
the corresponding collocation points on [0, £]. Also if we transform this interval to [0, 1], then,

47 — 3¢

r=— te[0,1].

In order to confirm the utility of the presented method, we apply the method to solve some
IVPs. The proposed method has been implemented with MathWorks MATLAB 2017a in a
personal computer 3.5 GHz Core 17 PC with 8 GB of RAM.

Example 1. The following two-sided FPDE has been solved in Reference [41]:

u(x,t)

= st e, HEDBu(x,t) + c_(x, ) DPu(x,t),  0<x<2,  (36)

with initial and boundary conditions

u(x,0) =42 —x)%,  w(0,1) = u(2,t) =0, 37)

has the exact solution u(x, {) = 4¢x%2 — x)?, where the coefficient functions,
e (6, ) =T(1.2)x",  c_(xv,t) =T(1.2)(2—2)",

and the forcing function

s, 1) = =32¢7 |22 4+ (2—x)* —25(x° + (2 —x)°) + 2—‘;’ (' + (2 -] — u(x,t).

By applying the presented method with # = 40, the obtained function #(x, ¢) is plotted in
Figure 1. Moreover, the error function E; ; () :=u(7;, ;) — it(7;, t;) is plotted in this figure too.
From that, this figure can be seen that our numerical solution is in good agreement with the
analytic solution. Consumed CPU time for an accurate solution is obtained in just 21.357

seconds.

Example 2. Consider the following Riesz space fractional diffusion equation [23]:

ou(x,t) 0" u(x,t)
ot - a|x|1+(l

+ s(x, 1), (38

subject to
u(x,0) =*(1—x)° 0<x<1, u(0,t)=u(l,t)=0, 0<t<T, (39)

where0 <a <1

Numerical
simulation
method

177




AJMS
28,2

178

Figure 1.

The approximation
function #(x, ) (left)
and the error function
(right) with # = 40 for
Example 1

- 24
s 4) = (1 -x)" + ¢ W+ (1—2)" b —
2 cos (1 "'20’)” {F(4 —a) }
et 12 —a P 2 . .
ZCOSW{WB—@ b A=+ gy b (1) }}.

and the exact solution is u(x, f) = %1 — x)%e~".

By applying the presented method with #» = 20 and @ = 0.2, the obtained function #(x, t) is
plotted in Figure 2. Moreover, the error of the obtained function #(x, ¢) is plotted in this figure

too. Consumed CPU time for an accurate solution is obtained in just 23427 seconds. In
Table 1, E,Zm(u) is the two-norms of the error for the obtained function #(x, ¢), which is
defined as, 1

B w= |3 @@ 6) — unt))?

=1 j=1

From Table 1, it can be seen that norms of errors for various values of 7 and a appear that the
small numbers of #, with that an accurate solution.

Example 3. We consider the following SFPDEs [29]:

u(x, 1) 9
=K;——
at ||

u(x, ), O<x<m l<a<? (40)

with initial and boundary conditions:
u(x,0) = sin(4x), u(0,t) = u(m,t) =0, 1)
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1 The approximation
1 function #(x, t) (left)
and the error function
(right) with » = 20 and
a = 0.2 for Example 2
A Ez,loo(”) Eéloo(”) E%z.wo(”) E%e,loo(“) Table 1.
Example 2: Norms of
a=12 34816e — 15 4.1010e — 15 5.7264¢ — 15 9.4558¢ — 15 errors E,, 100(ut) for
a=15 34191e — 15 4.1058¢ — 15 6.4447¢ — 15 9.5015¢ — 15 various values of 7
a=18 24772¢ — 15 4.3510e — 15 74810e — 15 1.1811e — 14 and a

Figure 3 shows the approximation function of #(x,¢), for order of fractional derivative
a=125and N\ = 1.5and the time for 0 < ¢ < 1. Observed that if value of « is decreased from 2
to 1 the amplitude of the sinusoidal solution behavior is increased. In Table 2, the values of
#(x,1) in various values of x and »# with the value of a = 1.5

Example 4. We consider the following FPDEs [42, 43]

u(x,t) 0
o +u(x,t) = 3T

u(x,t) +sx,t), l<a<g2, 42)

with initial and boundary conditions:
u(x,0) =2(L—x)°, 0<x<L,  u(0,t)=u(l,t)=0, 0<t<T,  (43)

tet (3t L—0) (B L-n") (L -27)

ste,) = cos % I'(5—a) - Ca) " ré-a

The exact solution is of the form u(x, #) = ¥*(L — x)% ' The problem (42) has been solved in
[43] by proposed a class of difference scheme based on the parameter spline function and
improved matrix transform method. Also, the authors in [42] have solved this problem (42) by
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Figure 3.

The approximation
function #(x, t) with
n=40anda =1.25,15
for Example 3

Table 2.

Example 3: The values
of u#(x,1) in various
values of ¥ and » with
the value of a = 1.5

Values of n n=11 n=16 n=21 n=26 n =231

(m/5,1) 0.099371 0.099576 0.099791 0.099962 0.100035
W(2r/5,1) —0.124557 —0.124638 —0.124584 —0.124602 —0.124594
#(37/5,1) 0.124557 0.124638 0.124584 0.124602 0.124594
(4 /5,1) —0.099371 —0.099576 —0.099791 —0.099962 —0.100035

proposing a space-time spectral algorithm based on the shifted Jacobi tau technique. To
demonstrate the accuracy of our proposed method, in Table 3, compare the absolute errors
lu(x;, 0.1) — u(x;, 0.1)|,7 = 1, ..., 9 with the numerical method proposed in [42, 43] and our
results for various choices of a.



Method of [42] Method of [43] The presented method
X a=12 a=15 a=18 a=12 a=15 a=18 a=12 a=15 a=18
02 154el2 378ell 434ell 16le3 142e3 724ed 0.1055e-12 09843e-  1.9413e-
04 144el0 864ell 137el0 142e3 1.02e3 574ed  1.47905e- 3‘9}5306- 2.3(1)§0e
06 163el0 154el0 148el10 875ed 749ed 412e4 3.3211)26:-12 5.041§0e 9.1;3%
08 130e10 210e10 155610 750e4 6.16e4 322e4 1.1055e-12 S.OAIL%Oe Z.Sé§6e
10 189el10 221el0 219e10 7.13ed 576ed4 295e4 21152e-12 1.0(1)%0e 8.3%56
12 248e10 194e10 253e10 750e4 616e4d 322e4 7.0055e-12 1.0411?06 5.15%
14 17310 151e10 174e10 875e4 749e4d 412e4 1349812 1.241L§0e 2.2%113
16 51lell 989el1l 621ell 142e3 1.02e3 574ed 6.245e-12 S.OgOe 5.2411§Oe
18 343ell 372ell 308ell 16le3 142e3 724e4 1.1055e-13 3‘0411%06 1.3%2&
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Table 3.

Example 4:
Comparison of
absolute errors of our
scheme with scheme in
[42, 43]

5. Conclusion

In the present paper, we developed an efficient and accurate method for solving SFPDE.
Applying the MOL together with the pseudospectral discretization method converts the
SFPDE to the system of ordinary differential equations. Choosing the shifted Jacobi functions
as a test basis with special parameters a, b gives us this opportunity to obtain the left- and
right-sided fractional differentiation matrices for this basis exactly.

Four examples have been solved, and the results are reported. These results show that our

method is efficient and provides accurate results, whereas a small number of JG nodes are
used based on the collocation method. Obtaining some theoretical estimates for the
approximation errors would be desirable.
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