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Abstract
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discrete boundary value problems involving the p-laplacian.
Design/methodology/approach – The approach is based on variational methods and critical point theory.
Findings – Theorem 1.1. Theorem 1.2. Theorem 1.3. Theorem 1.4.
Originality/value – The paper is original and the authors think the results are new.

Keywords Discrete boundary value problems, p-Laplacian, Nontrivial solution, Variational methods

Paper type Research paper

1. Introduction
The main goal of the present paper is to establish the existence and multiplicity of nontrivial
solutions for the following discrete nonlinear boundary value problems

ðPÞ �ΔðwpðΔuðt � 1ÞÞÞ ¼ f ðt; uðtÞÞ; t ∈ ½1;N �Z;
uð0Þ ¼ uðN þ 1Þ ¼ 0;

�

where N ≥ 1 is an integer, ½1;N �Z is the discrete interval 1; . . . ;Nf g, Δ is the
forward difference operator defined by Δu(t) 5 u(t þ 1) � u(t), wp(s) 5 jsjp�2s, 1 < p < ∞

and f : ½1;N �Z 3R→R is a continuous function.
By a solution of (P), we mean a function u : ½0;N þ 1�Z →R satisfies both equations of (P).
If f(t, 0)5 0 for any t ∈ ½1;N �Z, the constant function u5 0 is a trivial solution of problem

(P). In this case, the key point is proving the existence of nontrivial solutions for (P). For this
purpose, we need to introduce a condition that gives us information about the behaviors of the
perturbed function f(t, x) or its primitive F(t, x) near infinity and near zero.

We may think of (P) as a discrete analogue of the following second-order p-Laplacian
functional differential equation
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� d

dt
wp

duðtÞ
dt

� �� �
¼ f ðt; uðtÞÞ; t ∈ ½0; 1�;

uð0Þ ¼ uð1Þ ¼ 0:

8><
>:

Let λ1 > 0 be the first eigenvalue of the nonlinear eigenvalue problem (P0) corresponding to
problem (P)

ðP0Þ �ΔðwpðΔuðt � 1ÞÞÞ ¼ λwpðuðtÞÞ; t ∈ ½1;N �Z;
uð0Þ ¼ uðN þ 1Þ ¼ 0:

�

The value of λ1 is λ1 ¼ min
u∈EN nf0g

PNþ1

t¼1

jΔuðt − 1Þjp

PN
t¼1

juðtÞjp
, where EN defined in (2.1) (see [1]).

The discrete analogue of the Laplacian on Riemannian manifolds, the so-called discrete
Laplacian, has been studied intensively for the past few decades (see [2–7]). But, most
phenomena onmany cases are not expressed by the discrete Laplacian, which is known to be
linear because they have a nonlinear flow governed by these intrinsic characteristics. For this
reason, a nonlinear operator, called the discrete p-Laplacian, which is a generalization of the
discrete Laplacian has recently been studied by many researchers in various fields, for
example, dynamical systems, molecular structures, internet webs, image processing and so
on (for more details, see [8–12]). Especially, many researchers have paid attention to studying
boundary value problems and spectral theories for the discrete p-Laplacian (see [1, 13–19]).

As is well known, critical point theory and variational methods are powerful tools to
investigate the existence of solutions of various problems.

In this paper, we shall study the existence andmultiplicity of nontrivial solutions of (P), via
variational methods and critical point theory.

For convenience, we introduce the following notations.

F∞ ¼ lim
jxj→∞

inf min
t∈½1;N �Z

pFðt; xÞ
jxjp ; F∞ ¼ lim

jxj→∞
sup max

t∈½1;N �Z

pFðt; xÞ
jxjp ; F0 ¼ lim

x→0
inf min

t∈½1;N �Z

pFðt; xÞ
jxjp

And we make the following conditions:

(H1) there exists η with η < λ1 such that F ∞
≤ η, where

λ1 ¼ min
u∈EN nf0g

PNþ1

t¼1

jΔuðt � 1Þjp

PN
t¼1

juðtÞjp
; (1.1)

(H2) there exists δ with δ > λN such that F∞≥ δ, where

λN ¼ max
u∈EN nf0g

PNþ1

t¼1

jΔuðt � 1Þjp

PN
t¼1

juðtÞjp
; (1.2)

(H3) F0 > λN;

(H4) lim
x→0

Fðt;xÞ
jxjp ¼ 0, ∀t ∈ ½1;N �Z;

(H5) f(t, x) is odd in x, i.e. f(t, �x) 5 �f(t, x) for ðt; xÞ∈ ½1;N �Z 3R.
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The main results in this paper are the following theorems:

Theorem 1.1. λN (defined in (1.2)) is the last eigenvalue of the nonlinear eigenvalue
problem (P0).

Theorem 1.2. Assume that (H1) and (H3) hold, then problem (P) has at least one nontrivial
solution.

Theorem 1.3. Assume that (H2) and (H4) hold, then problem (P) has at least two nontrivial
solutions.

Theorem 1.4. Assume that (H1), (H3) and (H5) hold, then problem (P) has at least 2N
nontrivial solutions.

The rest of this paper is organized as follows. Section 2 contains some preliminary lemmas.
The main results will be proved in Sections 3 and 4.

2. Preliminary lemmas
In the present paper, we define a vector space EN by

EN ¼ fu : ½0;N þ 1�Z →R j uð0Þ ¼ uðN þ 1Þ ¼ 0 g; (2.1)

and for any u ∈ EN, define kuk ¼ PN
t¼1

juðtÞjp
� �1=p

.

Equipped with k k, EN is an N dimensional Banach space. In fact, EN is isomorphic toRN .
Let u ∈ EN, we consider the functional as follows:

ΦðuÞ ¼ 1

p

XNþ1

t¼1

jΔuðt � 1Þjp �
XN
t¼1

Fðt; uðtÞÞ: (2.2)

It is easy to see that Φ∈C1ðEN ;RÞ and its derivative Φ0(u) at u ∈ EN is given by

Φ0ðuÞ:v ¼
XNþ1

t¼1

jΔuðt � 1Þjp−2Δuðt � 1ÞΔvðt � 1Þ �
XN
t¼1

f ðt; uðtÞÞvðtÞ; ∀v∈EN :

By the summation by parts formula and the fact that v(0) 5 v(N þ 1) 5 0, it follows that

XNþ1

t¼1

jΔuðt � 1Þjp−2Δuðt � 1ÞΔvðt � 1Þ ¼ jΔuðNÞjp−2ΔuðNÞΔvðNÞ

þ
XN
t¼1

jΔuðt � 1Þjp−2Δuðt � 1ÞΔvðt � 1Þ ¼ −jΔuðNÞjp−2ΔuðNÞvðNÞ

þ jΔuðt−1Þjp−2Δuðt−1Þvðt−1Þ
h iNþ1

1
�
XN
t¼1

ΔðjΔuðt � 1Þjp−2Δuðt � 1ÞÞvðtÞ

¼ −jΔuðNÞjp−2ΔuðNÞvðNÞ þ jΔuðNÞjp−2ΔuðNÞvðNÞ � jΔuð0Þjp−2Δuð0Þvð0Þ

�
XN
t¼1

ΔðjΔuðt � 1Þjp−2Δuðt � 1ÞÞvðtÞ ¼ −
XN
t¼1

ΔðjΔuðt � 1Þjp−2Δuðt � 1ÞÞvðtÞ:
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Therefore, Φ0 can be written as

Φ0ðuÞ:v ¼
XN
t¼1

−ΔðjΔuðt � 1Þjp−2Δuðt � 1ÞÞ � f ðt; uðtÞÞ
h i

vðtÞ; ∀v∈EN :

Thus, finding solutions of (P) is equivalent to finding critical point of the functional Φ.

Definition 2.1. Let E be a real Banach space and Φ∈C1ðE;RÞ. Recall that Φ is said to
satisfy the Palais Smale (PS) condition if every sequence (un) ⊂ E, such that
Φ(un) is bounded andΦ0(un)→ 0 as n→∞, has a convergent subsequence.
Here, the sequence (un) is called a PS sequence.

Let Bρ denote the open ball in E about 0 of radius ρ and let vBρ denote its boundary.

Lemma 2.1. (Mountain pass lemma [20]) Let E be a real Banach space and Φ∈C1ðE;RÞ
satisfy the (PS) condition. If Φ(0) 5 0 and

σ1) there exist constants ρ, α > 0 such that ΦjvBρ
≥α,

σ2) there exist e ∈ E\Bρ such that Φ(e) ≤ 0.

Then Φ possesses a critical value c ≥ a given by c ¼ inf
g∈Γ

max
s∈ 0;1½ �

ΦðgðsÞÞ,
where

Γ ¼ fg ∈Cð 0; 1½ �;EÞ= gð0Þ ¼ 0; gð1Þ ¼ eg:

Lemma2.2. (see [21] )Let E be a real Banach space andΦ∈C1ðE;RÞbe even, bounded from
below, and satisfy the (PS) condition. Suppose that Φ(0) 5 0 and there is a set
Ω ⊂ E such thatΩ is homeomorphic to Sn�1 by an odd map and sup

u∈Ω
ΦðuÞ < 0,

where Sn�1 is the n� 1 dimensional unit sphere. Then,Φ has at least n disjoint
pairs of nontrivial critical points.

3. Eigenvalue problem
We consider the nonlinear eigenvalue problem (P0) corresponding to problem (P):

ðP0Þ �ΔðwpðΔuðt � 1ÞÞÞ ¼ λwpðuðtÞÞ; t ∈ ½1;N �Z;
uð0Þ ¼ uðN þ 1Þ ¼ 0;

�

Definition 3.1. λ∈R is called eigenvalue of (P0) if there exists u ∈ EN \{0} such that:

XNþ1

t¼1

wpðΔuðt � 1ÞÞΔvðt � 1Þ ¼ λ
XN
t¼1

wpðuðtÞÞvðtÞ; ∀v∈EN :

Proposition 3.1. (see [22] ) Let E be a real Banach space, G; J ∈C1ðE;RÞ and a set of
constraints

S5 {u ∈ E j G(u)5 0}. Suppose that for any u ∈ S, G0(u) ≠ 0 and there exists u0 ∈ S such that

Jðu0Þ ¼ inf
u∈S

JðuÞ. Then there is λ∈R such that J0(u0) 5 λG0(u0).

Proof of Theorem 1.1. Put JðuÞ ¼ PNþ1

t¼1

jΔuðt − 1Þjp ; GðuÞ ¼ PN
t¼1

juðtÞjp − 1, and

S ¼ fu∈ EN j GðuÞ ¼ 0g ¼ fu∈ EN j kuk ¼ 1g:
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It is easy to see that G0(u) ≠ 0 for any u ∈ S.
If the set S is compact and J is continuous on S, then there exists uN ∈ S such that

JðuN Þ ¼ max
u∈S

JðuÞ ¼ λ0:

Thus,

−JðuN Þ ¼ min
u∈S

ð−JðuÞÞ ¼ −λ0:

Clearly λ0 > 0. From the Proposition 3.1, there exists λN such that

J 0ðuN Þ ¼ λNG
0ðuN Þ:

Which means that

−ΔðwpðΔuN ðt � 1ÞÞÞ ¼ λNwpðuN ðtÞÞ; t ∈ ½1;N �Z: (3.1)

Multiplying (3.1) by uN in the sense of inner product, we obtain

XNþ1

t¼1

jΔuN ðt � 1Þjp ¼ λN
XN
t¼1

juN ðtÞjp;

i.e.

JðuN Þ ¼ λNkuNkp ¼ λN :

Therefore, λ0 5 λN is an eigenvalue of the problem (P0).
Thus, we have

λN ¼ max
u∈S

XNþ1

t¼1

jΔuðt � 1Þjp

¼ max
u∈EN nf0g

XNþ1

t¼1

jΔ uðt � 1Þ
kuk jp

¼ max
u∈EN nf0g

PNþ1

t¼1

jΔuðt � 1Þjp

PN
t¼1

juðtÞjp
:

If λ is an eigenvalue of the problem (P0), then there exists u ∈ EN \{0} such that:

XNþ1

t¼1

wpðΔuðt � 1ÞÞΔvðt � 1Þ ¼ λ
XN
t¼1

wpðuðtÞÞvðtÞ; ∀v∈EN :

In particular for v 5 u, we get λ ¼
PNþ1

t¼1

jΔuðt − 1Þjp

PN
t¼1

juðtÞjp
.

So, we deduce that λ1 ≤ λ ≤ λN.
Then, λN is the last eigenvalue of the problem (P0).
The proof of Theorem 1.1 is completed. ,

Discrete
boundary

value problem

77



4. Proofs of the main results

Proof of Theorem 1.2. Since F ∞
≤ η, there exists R1 > 0 such that

pFðt; xÞ
jxjp ≤ ηþ ε for ðt; jxjÞ∈ ½1;N �Z 3 R1;þ∞� ½;

where 0 < « < λ1 � η, i.e.

Fðt; xÞ≤ 1

p
ðηþ εÞjxjp for ðt; jxjÞ∈ ½1;N �Z 3 R1;þ∞� ½: (4.1)

Then, by (4.1) and the continuity of x → F(t, x), there exists c1 > 0 such that

Fðt; xÞ≤ 1

p
ηþ εð Þjxjp þ c1; ∀ðt; xÞ∈ ½1;N �Z 3R: (4.2)

According to (1.1), we have

XNþ1

t¼1

jΔuðt � 1Þjp ≥ λ1kukp: (4.3)

Using (4.2) and (4.3), we obtain

ΦðuÞ ≥
1

p
λ1kukp � 1

p
ðηþ εÞ

XN
t¼1

juðtÞjp � c1N

≥
1

p
λ1 � ðηþ εÞ½ �kukp � c1N :

Since « < λ1 � η, then Φ(u) → ∞ as kuk → ∞. Thus, Φ is coercive and bounded from
below, hence there is aminimumpoint ofΦ at some u0∈EN i.e.Φðu0Þ ¼ inf

u∈EN

ΦðuÞ, which is a
critical point of Φ and in turn is a solution of problem (P).

From (H3), there exists ρ1 > 0 such that

pFðt; xÞ
jxjp ≥F0 � ε; for ðt; jxjÞ∈ ½1;N �Z 3 0; ρ1½ �;

where 0 < « < F0 � λN, i.e.

Fðt; xÞ≥ 1

p
ðF0 � εÞjxjp for ðt; jxjÞ∈ ½1;N �Z 3 0; ρ1½ �: (4.4)

Put

Ω ¼ fu∈EN j kuk ¼ ρ1g: (4.5)

For any u ∈ Ω,
juðtÞj≤ kuk ¼ ρ1; ∀t ∈ ½1;N �Z:
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From (1.2), we get

XNþ1

t¼1

jΔuðt � 1Þjp ≤ λNkukp: (4.6)

Combining the preceding inequality and (4.4), we have

ΦðuÞ ≤
1

p
λNkukp � 1

p
ðF0 � εÞkukp

¼ 1

p
λN � ðF0 � εÞ½ �ρp1 < 0:

Thus, we obtain

sup
u∈Ω

ΦðuÞ < 0: (4.7)

Hence,

Φðu0Þ ¼ inf
u∈EN

ΦðuÞ≤ inf
u∈Ω

ΦðuÞ≤ sup
u∈Ω

ΦðuÞ < 0:

So problem (P) has at least one nontrivial solution.
The proof of Theorem 1.2 is completed. ,

Proof of Theorem 1.3. From the condition (H4), for ε ¼ λ1
2p there exists ρ2 > 0 such that:

jFðt; xÞj≤ λ1
2p
jxjp for ðt; jxjÞ∈ ½1;N �Z 3 0; ρ2½ �: (4.8)

Let u ∈ EN with kuk ≤ ρ2, then juðtÞj≤ ρ2; ∀t ∈ ½1;N �Z.
Thus, we have

ΦðuÞ ≥
λ1
p
kukp � λ1

2p
kukp

≥
λ1
2p
kukp:

Take α ¼ λ1
2p ρp2 > 0. Therefore,

ΦðuÞ≥ α > 0; ∀u∈ vBρ2: (4.9)

At the same time, we have also proved that there exist constants α > 0 and ρ2 > 0 such that
ΦjvBρ2

≥ α. That is to say, Φ satisfies the condition σ1 of the mountain pass lemma.

For our setting, clearΦ(0)5 0. In order to exploit themountain pass lemma in critical point
theory, we need to verify all other conditions of the mountain pass lemma.

According to the condition (H2), there exists R2 > 0 such that

pFðt; xÞ
jxjp ≥ δ� ε for ðt; jxjÞ∈ ½1;N �Z 3 R2;þ∞� ½;
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where 0 < « < δ � λN, i.e.

Fðt; xÞ≥ 1

p
ðδ� εÞjxjp for ðt; jxjÞ∈ ½1;N �Z 3 R1;þ∞� ½: (4.10)

Then, by (4.10) and the continuity of x → F(t, x), there exists c2 > 0 such that

Fðt; xÞ≥ 1

p
ðδ� εÞjxjp � c2; ∀ðt; xÞ∈ ½1;N �Z 3R: (4.11)

Now, using again (4.6) and (4.11), it follows that,

ΦðuÞ ≤
λN
p
kukp � 1

p
ðδ� εÞkukp þ c2N

≤
1

p
λN � ðδ� εÞ½ �kukp þ c2N :

Consequently, since « < δ � λN, we have

ΦðuÞ→ �∞; as kuk→∞: (4.12)

Thus, we can choose u large enough to ensure that ΦðuÞ < 0, that is, there exists
e ¼ u∈EnBρ2 such that Φ(e) < 0.

From (4.12), Φ is anti-coercive, hence for any PS sequence (un) is bounded. In view of the
fact that the dimension of EN is finite, we see that Φ satisfies the (PS) condition.

By the mountain pass lemma, Φ possesses a critical value c≥ α ¼ λ1
2p ρp2 > 0,

where c ¼ inf
g∈Γ

max
s∈ 0;1½ �

ΦðgðsÞÞ and Γ ¼ fg ∈Cð 0; 1½ �;EÞ j gð0Þ ¼ 0; gð1Þ ¼ ug.
Let u1 ∈ EN be a critical point associated to the critical value c of Φ, i.e. Φ(u1) 5 c.
Hence, u1 is a nontrivial solution of problem (P).
Since Φ is anti-coercive and bounded from above, there is a maximum point of Φ at

some u2 ∈ EN,
i.e. Φðu2Þ ¼ sup

u∈EN

ΦðuÞ.
Using the preceding equality and (4.9), we obtain

Φðu2Þ ¼ sup
u∈EN

ΦðuÞ≥ sup
u∈vBρ2

ΦðuÞ > 0:

Hence u2 is a nontrivial solution of problem (P).
If u1 ≠ u2, then we have two nontrivial solutions: u1 and u2.
Otherwise, suppose u1 5 u2, then inf

g∈Γ
max
s∈ 0;1½ �

ΦðgðsÞÞ ¼ sup
u∈EN

ΦðuÞ.
Therefore, we have Φðu1Þ≤ max

s∈ 0;1½ �
ΦðgðsÞÞ≤Φðu2Þ; ∀g ∈Γ.

Since u1 5 u2, we deduce that Φðu1Þ ¼ max
s∈ 0;1½ �

ΦðgðsÞÞ; ∀g ∈Γ.

The continuity ofΦ(g(s)) with respect to s,Φ(0)5 0 andΦðuÞ < 0 implies that there exists
s1 ∈ 0; 1� ½ such that Φ(u1) 5 Φ(g(s1)). Choose g2, g3 ∈ Γ such that

fg2ðsÞ j s∈ 0; 1� ½g \ fg3ðsÞ j s∈ 0; 1½ �g ¼ ∅;

then there exists s2; s3 ∈ 0; 1� ½ such that

Φðg2ðs2ÞÞ ¼ Φðg3ðs3ÞÞ ¼ Φðu1Þ ¼ max
s∈ 0;1½ �

ΦðgðsÞÞ:
Thus, we get two different critical points of Φ on EN denoted by v2 5 g2(s2), v3 5 g3(s3)
that are nontrivial solutions of problem (P).
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The proof is completed. ,

Proof of Theorem 1.4. Let Φ be defined by (2.2). Then, it is clear that Φ(0)5 0 and Φ is
even by (H5).

From the proof of Theorem 1.2,Φ is bounded from below, coercive and any PS sequence (un)
is bounded. In view of the fact that the dimension of EN is finite, we see that Φ satisfies the
(PS) condition.

Let SN�1 be the unit sphere in RN and define T: Ω → SN�1 by

TðuÞ ¼ 1

ρ1
u;

where Ω (defined in (4.5)).
Then, T is an odd homeomorphism between Ω and SN�1, and sup

u∈Ω
ΦðuÞ < 0 (see (4.7)).

Hence, all the conditions of Lemma 2.2 are satisfied, soΦ has at least 2N nontrivial critical
points, which are nontrivial solutions of problem (P).

This completes the proof of Theorem 1.4. ,
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