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Abstract

Purpose – This study aims to find all subalgebras up to conjugacy in the real simple Lie algebra soð3; 1Þ.
Design/methodology/approach – The authors use Lie Algebra techniques to find all inequivalent
subalgebras of soð3; 1Þ in all dimensions.
Findings – The authors find all subalgebras up to conjugacy in the real simple Lie algebra soð3; 1Þ.
Originality/value – This paper is an original research idea. It will be a main reference for many applications
such as solving partial differential equations. If soð3; 1Þ is part of the symmetry Lie algebra, then the
subalgebras listed in this paper will be used to reduce the order of the partial differential equation (PDE) and
produce non-equivalent solutions.
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1. Introduction
In the classification of real simple Lie algebras, soð3; 1Þ is the unique simple six-dimensional
Lie algebra. The Lie algebra soð3; 1Þand its associated Lie group SO(3, 1) are of fundamental
importance in the theory of relativity, as is very well known. However, in terms of finding
representations of soð3; 1Þ, the situation is apt to become confusing because the usual
approach is to complexify andsoð3; 1Þ⊗ℂ≈ soð3;ℂÞ⊕ soð3;ℂÞ. A closely related idea is to
use Weyl’s unitarian trick. In this regard, we refer to [1] where an apparently non-standard
representation of soð3; 1Þ is given.We do not know at this time if it is of physical significance.

In [2] Dynkin studied the problem of findingmaximal dimension subgroups of a simple Lie
group and by extension, maximal dimension subalgebras of its Lie algebra. In [3], the
subalgebras of glð3;RÞwere classified. In [4], subalgebras of slð4;RÞwere studied that are
not solvable. In [5], a slightly different direction provides minimal dimension representations
of Levi decomposition Lie algebras up to and including dimension eight.

Our goal in this note is to find all Lie subalgebras ofsoð3; 1Þup to conjugacy.Most of the Lie
subalgebras concerned can be found from consideration of the Cartan subalgebras, soð3; 1Þ
being a rank two algebra. Of course it is important to understand thatwhenwe say “conjugate,”
we mean equivalent under a change of basis that belongs to SO(3, 1). We study the case of
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one-dimensional subalgebras in Section 3, two-dimensional subalgebras in Section 4, three-
dimensional subalgebras in Section 5, show that there are no five-dimensional subalgebras in
Section 6 and consider subalgebras of dimension four in Section 7. In Section 8,we give a different
representation of soð3; 1Þ and argue that it is not conjugate to the standard representation.
Finally, in Section 9, we provide a table of proper subalgebras of soð3; 1Þ up to conjugacy.

2. The Lie algebra soð3; 1Þ
The real simple Lie algebra soð3; 1Þ is defined by the following space of matrices:

S ¼
0 �s6 �s5 s1
s6 0 s4 s2
s5 �s4 0 s3
s1 s2 s3 0

2
664

3
775: (1)

From equation (1), the Lie brackets of soð3; 1Þ are
½e1; e2� ¼ −e6; ½e1; e3� ¼ −e5; ½e1; e5� ¼ −e3; ½e1; e6� ¼ −e2;
½e2; e3� ¼ e4; ½e2; e4� ¼ e3; ½e2; e6� ¼ e1; ½e3; e4� ¼ −e2;
½e3; e5� ¼ e1; ½e4; e5� ¼ e6; ½e4; e6� ¼ −e5; ½e5; e6� ¼ e4:

(2)

Our goal in this note is to find all Lie subalgebras of soð3; 1Þ up to conjugacy.

3. One-dimensional Lie subalgebras
Starting from (1), there is a transformation inSO(3, 1) of the form

A 0
0 1

� �
, whereA∈SO(3) such

that we can reduce s4 and s5 to zero. Now consider the matrix

P ¼
cos θ sin θ 0 0
�sin θ cos θ 0 0

0 0 1 0
0 0 0 1

2
664

3
775: (3)

Then conjugating S by P, we obtain

P−1SP ¼
0 �s6 0 s1 cos θ � s2 sin θ
s6 0 0 s1 sin θ þ s2 cos θs2
0 0 0 0

s1 cos θ � s2 sin θ s1 sin θ þ s2 cos θ 0 0

2
664

3
775: (4)

Note thatP ∈ soð3; 1Þ. As such, we can choose θ so that s25 0. ThematrixS has been reduced
to

S ¼
0 �s6 0 s1
s6 0 0 0
0 0 0 s3
s1 0 s3 0

2
664

3
775: (5)

Now the characteristic polynomial of this reduced S is given by

λ4 þ �
s26 � s21 � s23

�
λ2 � s23s

2
6 ¼ 0: (6)
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3.1 Zero eigenvalues
If the four roots of (6) are all zero, we must have in the first instance, s3s6 5 0. However, if
s65 0, then looking at the λ2 term, wewould have s15 s35 0 and S5 0. Hence, for non-zero S,
we must have s3 5 0 and s6 5 ±s1. It appears as though we have two cases to consider now,
but there is just one case as we shall now explain.

Conjugate S by the matrix Q∈ soð3; 1Þ, where

Q ¼
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

2
664

3
775: (7)

Then we find that

Q−1SQ ¼
0 s6 0 0

�s6 0 0 s1
0 0 0 0
0 s1 0 0

2
664

3
775; (8)

but we may conjugate again by P from (3) with θ ¼ 3π
2
, so as to restore s1 to the (1, 4)-entry,

without disturbing s6 and arrive finally at

S ¼
0 s1 0 s1

�s1 0 0 0
0 0 0 0
s1 0 0 0

2
664

3
775: (9)

Since we require only a generator for a one-dimensional Lie subalgebra, we may further
suppose that s1 5 1 in (9).

3.2 Eigenvalues not all zero
From now on, we shall assume that the eigenvalues of S are not all zero. In this case, we
introduce the matrix R that belongs to soð3; 1Þ

R ¼
cos θ 0 �sin θ 0
0 coshψ 0 sinhψ

sin θ 0 cos θ 0
0 sinhψ 0 coshψ

2
664

3
775: (10)

In this case, matrix (5) may be conjugated to

R−1SR ¼
0 �t6 0 t1
t6 0 t4 0
0 �t4 0 t3
t1 0 t3 0

2
664

3
775 (11)

where

t1 ¼ ðb cos θ þ c sin θÞcoshψ � a sinhψ cos θ (12)

t3 ¼ a sin θ sinhψ þ ðc cos θ � b sin θÞcoshψ (13)
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t4 ¼ ðb sin θ � c cos θÞsinhψ � a sin θ coshψ (14)

t6 ¼ a cos θ coshψ � ðb cos θ þ c sin θÞsinhψ : (15)

It is always possible to choose θ and ψ such that t1 5 0 and t4 5 0. Indeed (12) and (14)
imply that

tanh 2ψ ¼ 2ab

a2 þ b2 þ c2
; tan 2 θ ¼ 2bc

b2 � a2 � c2
: (16)

If b2� a2 � c25 0, we choose θ ¼ π
4. The conclusion is that if the eigenvalues of S are not all

zero, then S may always be conjugated to the form

S ¼
0 �s6 0 0
s6 0 0 0
0 0 0 s3
0 0 s3 0

2
664

3
775: (17)

In terms of a one-dimensional Lie subalgebra, we may further suppose that either s3 5 1
or s6 5 1.

4. Two-dimensional Lie subalgebras
4.1 Two-dimensional abelian Lie subalgebras
Nowwe proceed to examine the two-dimensional Lie subalgebras of soð3; 1Þ. First of all, it is
easy to check that, starting frommatrix (9), a matrix in soð3; 1Þ that commutes with (9) other
than (9) itself, must be of the form

B ¼
0 0 0 0
0 0 �s2 0
0 s2 0 s2
0 0 s2 0

2
664

3
775: (18)

Putting the matrices (9) and (18) together gives a two-dimensional abelian subalgebra.
Secondly, the only two-dimensional abelian Lie subalgebra to which the matrix (17)

belongs is the Cartan subalgebra obtained by taking the span of the matrices s3 5 1, s6 5 0
and s35 0, s65 1 in (17). Hence, any two-dimensional abelian Lie subalgebra of soð3; 1Þ is a
Cartan subalgebra, and all of them are conjugate: see [6, 7].

4.2 Two-dimensional non-abelian Lie subalgebras
4.2.1 One generator of type (9). Now we attempt to find two-dimensional non-abelian Lie
subalgebras. We shall assume that one generator A is given by (9) and we take a second B in
the form (1). In B, by subtracting a multiple ofA from B, we may assume that s65 0. Now we
find that

½A;B��μA�νB¼
0 s2�μ νs5þ s3þ s4 s2�νs1�μ

μ� s2 0 �νs4þ s5 �νs2� s1
�ðνs5þ s3þ s4Þ νs4� s5 0 �νs3� s5
s2�νs1�μ �νs2� s1 �νs3� s5 0

2
664

3
775: (19)

We begin to solve the conditions arising from setting to zero all entries in the matrix that
appear on the right hand side of (19). We find
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s4 ¼ ν2s3 � s3; μ ¼ s2; s1 ¼ −νs2 � s6; s5 ¼ −νs3: (20)

At this point, we see that if ν ≠ 0, then B 5 0. However, if ν 5 0, then (19) is now satisfied.
Furthermore, we have now that

B ¼
0 0 0 0
0 0 �s3 s2
0 s3 0 s3
0 s2 s3 0

2
664

3
775: (21)

If we assume that s25 0, then we find that [A, B]5 0, whereas we are assuming that our two-
dimensional subalgebra is non-abelian. Thus, wemay suppose that s2≠ 0, andwe findP�1BP
where

P ¼

1 0 0 0

0 1� s23
2s22

�s3

s2
� s23
2s22

0
s3

s2
1

s3

s2

0
s23
2s22

s3

s2
1þ s23

2s22

2
666666666664

3
777777777775

: (22)

We have chosen P so that it belongs to soð3; 1Þ and commutes with A. We find that

P−1BP ¼
0 0 0 0
0 0 0 s2
0 0 0 0
0 s2 0 0

2
664

3
775 (23)

and hence we may assume s2 5 1. We now have our two-dimensional non-abelian Lie
subalgebra with generators A, B

A ¼
0 1 0 1
�1 0 0 0
0 0 0 0
1 0 0 0

2
664

3
775; B ¼

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

2
664

3
775 (24)

and Lie bracket [A, B] 5 A. This subalgebra is unique up to conjugacy.
4.2.2 One generator of type (17). Now we shall show that there can be no two-dimensional

non-abelian Lie subalgebra when one generator is of type (17). Thus, we assume that

A ¼
0 �s6 0 0
s6 0 0 0
0 0 0 s3
0 0 s3 0

2
664

3
775; B ¼

0 �t6 �t5 t1
t6 0 t4 t2
t5 �t4 0 t3
t1 t2 t3 0

2
664

3
775: (25)

Now supposing there exist μ, ν such that [A, B]� μA� νB5 0, leads to the following system
of equations:
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μs6 þ νt6 ¼ 0
νt5 � s3t1 � s6t4 ¼ 0
νt1 � s3t5 þ s6t2 ¼ 0
νt4 þ s3t2 þ s6t5 ¼ 0
νt2 þ s3t4 � s6t1 ¼ 0
μs3 þ νt3 ¼ 0:

However, it is easy to see that solving this system leads to an abelian subalgebra.

5. Three-dimensional Lie subalgebras
There are, depending how one counts, perhaps six classes of real, solvable, three-dimensional
Lie algebras. In this context, we are referring to abstract Lie algebras, and not at the moment
necessarily subalgebras of soð3; 1Þ. They are comprised of the algebras A3.1, . . .A3.7 and
A2.1⊕ in [8], as well as the abelian three-dimensional Lie subalgebra. Each of these algebras
has a two-dimensional abelian ideal. We saw in the previous Section that two-dimensional
abelian subalgebras can occur in just two ways, up to isomorphism. One such way is as a
Cartan subalgebra. However, we know that Cartan subalgebras are self-normalizing [7].
Therefore, the only possibility for a three-dimensional solvable subalgebra of soð3; 1Þ to have
a two-dimensional abelian ideal is if it the subalgebra spanned by the matrices (9) and (18), up
to isomorphism.

Next we take a matrix of the form (1) that we call C, and find the conditions on C such that
[A, C] and [B, C] are linear combinations ofA and B, whereA is a matrix of the form (9) and B
of the form (18). We may ease the working by assuming that s1 5 0 and s6 5 0 in P. A
straightforward calculation reveals that in Pwemust have s35 s45 0. If we setA,B, C equal
to e1, e2, e3 and s5 5 a and s2 5 b, respectively, we obtain the non-zero Lie brackets:

½e1; e3� ¼ ae1 � be2; ½e2; e3� ¼ be1 þ ae2: (26)

Assuming that a2þ b2≠ 0 so that the matrix C does not vanish, wemay scale C by a non-zero
factor, so we can suppose that either b5 1 or a5 1, b5 0. As abstract Lie algebras, they are
A3.3 and A3.6/7 in [8].

It remains only to discuss the cases of subalgebras that are isomorphic to slð2;RÞ and
soð3Þ. Concerning slð2;RÞ, we see from (2), that we can take the brackets in the form

½e2 þ e6; e1� ¼ e2 þ e6; ½e1; e2 � e6� ¼ e2 � e6; ½e2 � e6; e2 þ e6� ¼ 2e1: (27)

Accordingly, following the discussion at the end of the previous Section, we may put
e2þ e65A and e15 B from (25) so that the bracket [e2þ e6, e1]5 e2þ e6 is satisfied. We will
use the remaining brackets to determine e2� e6 and hence e2 and e6 separately. However, it is
quite straightforward to check that we obtain precisely the span of the three matrices
obtained from (2) by putting in turn s1 5 1, s2 5 s3 5 s4 5 s5 5 s6 5 0, s2 5 1,
s15 s35 s45 s55 s65 0, s15 s25 s35 s45 s55 0, s65 1. In particular, all subalgebras of
soð3; 1Þ that are isomorphic to slð2;RÞ are conjugate. It is interesting to note that the
representation of slð2;RÞ appearing in soð3; 1Þ is conjugate via a transformation of glð4;RÞ
(not soð3; 1Þ!) to the direct sum of the adjoint and a one-dimensional trivial representation, as
we invite the reader to show: see also the end of Section 8 below.

As regards soð3Þ, there are only two possible representations in glð4;RÞ, coming from the
irreducible 43 4 and standard 33 3 representations. However, the former is by 43 4 skew-
symmetric matrices and so cannot be found in (1). Thus, the only possibility of obtaining
soð3Þ at all in (1), is the obvious one, that is, the upper left 3 3 3 block using s4, s5, s6 in (1).
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6. Four-dimensional Lie subalgebras
A Borel subalgebra in a semi-simple Lie algebra is a solvable subalgebra of maximal
dimension. We may construct a Borel subalgebra by using the positive roots in a Cartan
decomposition. Referring to (1), we use the Cartan subalgebra that corresponds to s3 and s6.

Then we use the positive simple roots
1
±i

� �
with root vectors e1 þ 7ie2 þ ±ie4 þ e5.

We can obtain the Borel subalgebra from the following set of matrices:

T ¼
0 �t4 t1 t1
t4 0 t2 t2
�t1 �t2 0 t3
t1 t2 t30 0

2
664

3
775: (28)

The matrix T engenders the following Lie algebra

½e1; e3� ¼ e1; ½e1; e4� ¼ −e2; ½e2; e3� ¼ e2; ½e2; e4� ¼ e1; (29)

which is precisely algebra A4.12 in [8]. We could also arrive at the same conclusion by
revisiting the calculation of the previous Section and allowing the parameters s2 and s5 to
generate independent matrices. It is known [7] that all such Borel subalgebras are conjugate.

There can be no four-dimensional Lie subalgebras of soð3; 1Þ that have a necessarily
trivial Levi decomposition, that is slð2;RÞ⊕R or soð3Þ⊕R, for in both cases the
centralizers consist of diagonal matrices and do not belong to soð3; 1Þ.

7. Five-dimensional Lie subalgebras
Finally, we shall show that soð3; 1Þ does not possess any five-dimensional Lie subalgebras.
Since the Borel subalgebras are four-dimensional, there can be no five-dimensional solvable
subalgebras. For the same reason as in dimension four, there can be no Levi decomposition
subalgebras that have a trivial Levi decomposition. Thus, we have only to show that we
cannot obtain the five-dimensional indecomposable Lie algebra, denoted byA5.40 in [8], which

is a semi-direct product of slð2;RÞandR2. TheR2 factor here is the radical, which is an ideal.
Now according to Section 5, we may assume that the Levi factor slð2;RÞ is determined by s1,
s2, s6 in (1). However, as such, we have a representation of slð2;RÞ that reduces as an
irreducible three-dimensional representation and a trivial one-dimensional representation.
Hence, there can be no two-dimensional invariant subspace that would be needed to
accommodate the radical of the Lie subalgebra A5.40.

8. Another representation of soð3; 1Þ
In equation (1), we have given the definition of the Lie algebra soð3; 1Þ. We now wish to
exhibit another 4 3 4 representation of soð3; 1Þ, which is not conjugate to the standard
representation. Thus, we introduce the following matrix U.

U ¼
s1 s2 s3 s4
�s2 s1 s4 �s3
s5 s6 �s1 s2
s6 �s5 �s2 �s1

2
664

3
775: (30)

In the same way as in (1), we obtain the following Lie brackets:

½e1; e3� ¼ 2e3; ½e1; e4� ¼ 2e4; ½e1; e5� ¼ −2e5; ½e1; e6� ¼ −2e6;
½e2; e3� ¼ −2e4; ½e2; e4� ¼ 2e3; ½e2; e5� ¼ −2e6; ½e2; e6� ¼ 2e5;
½e3; e5� ¼ e1; ½e3; e6� ¼ e2; ½e4; e5� ¼ −e2; ½e4; e6� ¼ e1:

(31)
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If we make the following change of basis

−
e1

2
;�ðe4 þ e6Þ

2
;�ðe3 þ e5Þ

2
;�e2

2
;
ðe5 � e3Þ

2
;
ðe6 � e4Þ

2
(32)

then we will obtain precisely the same Lie brackets as in (1), and so we know that (30) is a
representation of soð3; 1Þ. The subalgebra of (30) given by putting s2 5 s4 5 s6 5 0 is
isomorphic to slð2;RÞ. It appears in the “diagonal” representation of slð2;RÞ.

Referring to (1), the subalgebra given by putting s35 s45 s55 0 is isomorphic to slð2;RÞ.
Clearly this representation is equivalent to

S ¼
0 �s6 s1 0
s6 0 s2 0
s1 s2 0 0
0 0 0 0

2
664

3
775: (33)

It may be shown that (33) is equivalent to the direct sum of the adjoint representation and a
one-dimensional trivial representation, that is,

S ¼
2s6 2s1 0 0
s2 0 s1 0
0 2s2 �2s6 0
0 0 0 0

2
664

3
775: (34)

Begin by finding a linear combination of the matrices (33) that are nilpotent, which inevitably
necessitates the introduction of some

ffiffiffi
2

p
’s. Thus, the representations (1) and (30) are not

conjugate.

9. Table of proper subalgebras of soð3; 1Þ up to conjugacy
9.1 One-dimensional Lie subalgebras

0 s1 0 s1
�s1 0 0 0
0 0 0 0
s1 0 0 0

2
664

3
775;

0 �as1 0 0
as1 0 0 0
0 0 0 bs1
0 0 bs1 0

2
664

3
775ða ¼ 1orb ¼ 1Þ:

9.2 Two-dimensional Lie subalgebras

0 s1 0 s1
�s1 0 �s2 0
0 s2 0 s2
s1 0 s2 0

2
664

3
775;

0 �s1 0 0
s1 0 0 0
0 0 0 s2
0 0 s2 0

2
664

3
775;

0 s1 0 s1
�s1 0 0 s2
0 0 0 0
s1 s2 0 0

2
664

3
775:

9.3 Three-dimensional Lie subalgebras

0 s3 �s2 0
�s3 0 s1 0
s2 �s1 0 0
0 0 0 0

2
664

3
775;

0 �s3 �0 s1
s3 0 0 s2
0 �0 0 0
s1 s2 0 0

2
664

3
775;

0 s1 �as3 s1
�s1 0 �s2 bs3
as3 s2 0 s2
s1 bs3 s2 0

2
664

3
775ða¼ 1;b¼ 0orb¼ 1Þ:
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9.4 Four-dimensional Lie subalgebras

0 �s4 s1 s1
s4 0 s2 s2
�s1 �s2 0 s3
s1 s2 s3 0

2
664

3
775:
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