The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/1319-5166.htm

Received 13 January 2021
Revised 28 March 2021
Accepted 28 March 2021

Ar_ab Journal of Mathematical

Emerald Publishing Limited

DOI 10:1108/A]1\/157017202170013

Arithmetic properties of singular
overpartition pairs without
multiples of &

S. Shivaprasada Nayaka, T K. Sreelakshmi and Santosh Kumar
Department of Mathematics, BMS Institute of Technology and Management,
Bengaluru, India

Abstract

Purpose - In this paper, the author defines the functlonB ( ), the number of singular overpartition pairs of n
without multiples of % in which no part is divisible by & and only parts congruent to + 7, + 7 modulo § may be
overlined.

Design/methodology/approach — Andrews introduced to combinatorial objects, which he called singular
overpartitions and proved that these singular overpartitions depend on two parameters § and ¢ can be
enumerated by the function Cs; (), which gives the number of overpartitions of # in which no part divisible by
& and parts = + {(Mod ) may be overlined.

Findings — Using classical spirit of g-series techniques, the author obtains congruences modulo 4 for B2 4( ),

By and B, ;.

Originality/value — The results established in this work are extension to those proved in Andrews’ singular
overpatition pairs of 7.
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1. Introduction
For |ab| < 1, Ramanujan’s general theta function f(a, b) is defined as

,b) _ Z an(nJrl)/an(n—l)/Z7 (11)

Nn=-—0o0

where the product representations arise from Jacobi’s triple product identity [1, p. 35,
Entry 19].
f(a,b) = (—a;ab)_(—b;adb)_(ab;abd).. 1.2)

Throughout the paper, we use the standard g-series notation, and f;, is defined as

fk::(qk _ ILI?OH _ mk

The special cases of fla, b) are
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0 5
o@)=F@0) = 3 0" = (gL P = ff—z 13
n=—o00 1/ 4
— 3y _ S n(n+1)/2 _ (qz;qz)w :fé
w(q)=/(q,4") ;q T (14)
and f~a)=f(=¢,—¢") = Y (-1)'¢"® V" = (g;9),, = f- (L5)

n=-—o00

A partition of a positive integer # is a nonincreasing sequence of positive integers whose sum
is 7. An overpartition, introduced by Corteel and Lovejoy [2], of a nonnegative integer # is a
nonincreasing sequence of natural numbers whose sum is 7 in which the first occurrence of a
number may be overlined.

Recently, G. E. Andrews [3] defined combinatorial objects, which he called singular
overpartitions and proved that these singular overpartitions depend on two parameters 6 and
i can be enumerated by the function C;;(n), which gives the number of overpartitions of # in
which no part divisible by § and parts = +¢ (mod 6) may be overlined. The generating function
of Cs;(n) 1s

o i. 8\ (_6—i. 8
S Couln)e’ (@%0)e(=05 0" )u (0" "3 0") (1L6)
s (7:9)
He also proved that
Cs1(9m 4 3)=C31(9 +6) =0 (mod 3). 1.7)

Andrews [3] proves that, for all n > 0, Egﬁl(n) = As(n), where Zg(%) is the number of

overpartitions of 72 into parts not divisible by 3. The function 4, (n), which counts the number
of overpartitions of # into parts not divisible by ¢, plays a key role in the work of Lovejoy [4].
Chen et al. [5]have generalized (1.7) and proved some congruences modulo 2, 3,4 and 8 for

Cy.1(n). They also proved some congruence for Cy 1 (), Cg1(n) and Cg 2(n) modulo powers of
2 and 3. More recently, Ahmed and Baruah [6] have found some new congruences for C3 (),
Cs2(n), Cr24(n), Cayg(n) and Cyg16(n) modulo 18, 36. Chen [7] has also found some
congruences modulo powers of 2 for C31 (1), C41(n). Yao [8] has proved congruences modulo
16, 32, 64 for 6311 (n). Naika and Gireesh [9] have found some congruences modulo 6, 12, 16, 18,
24, 48 and 72 for 63,1 (n). Naika and Nayaka [10] have proved some congruences for COs 1 (1)
modulo powers of 2 and 3. They have also proved in a paper [11] modulo 4 for Eil (n)
and C4 1(m).

In [12 13], Naika et al. have defined the Andrews’ singular overpartition pairs of 7. Let

—
C; j(n) denote the number of Andrews’ singular overpartition pairs of 7 in which no part

is divisible by § and only parts congruent to + 7, + j modulo § may be overlined. Andrews’
singular overpartition pair z of z is a pair of Andrews’ singular overpartitions (4, u) such
that the sum of all of the parts is #. They also established Ramanujan-like congruences

for Eiz(n) modulo 3,9, 27 and infinite families of congruences for Zﬁ;(n) modulo 4, 6
and 9.
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. . ) . .. .
In this paper, we define the function ij (n), the number of singular overpartition pairs of
n without multiples of % in which no part is divisible by § and only parts congruent to + 7, +J

modulo 6 may be overlined. The generating function of Eiik(n) is given by

0 10— j — . 2
Brong — @@ @) a5 e )
2B 00 Fgh, g*o-))f (¥, o) (g; )7,

. . 83, w85 5123 .
In this paper, we establish some congruences modulo 4 for B, ;(n), By, and B, ; . The main
results of this paper can be stated as follows. '

(1.8

n=0

Theorem 1.1. For all integers a > 0 and n > 0,

B, (161 +9)=0 (mod 4), 19
B)3(16n +13) =0 (mod 4), (1.10)
By1(32n +23) =0 (mod 4), (L11)
B)1(322+31) =0 (mod 4), (112)
By (64n + 35) =0 (mod 4), (113)
By3(64n +51) =0 (mod 4), (1.14)
B,,(256 + 139) =0 (mod 4), (L15)
B,,(2567 + 203) =0 (mod 4), (116)
=83 =83

B, (4n + 3) =B, (647 + 43) (mod 4), (117)

—83 —83 —83
By (81 +5) =B}, (320 + 19) =By, (128 + 75) (mod 4). (118)

Theorem 1.2. Let p be a prime > 5, (‘f) = —1. Then for all integers @ > 1, and # > 0,

o 20
S B <16p2"n n %) ¢" =2 (mod 4). (119)
n=0

Theorem 1.3. Let p be a prime > 5, (‘f) = —1. Then for all integers @ > 0, and # > 0,
1 4p2a+2 + 1
+ - @

B, (16152‘”2% + 1657 .

) =0 (mod 4), (1.20)

where i1s an integer and 1 <i <p — 1.

Theorem 1.4. For all integers a > 0 and n > 0,

By;(4n+3) =0 (mod 4), (1.21)



Bo(8n+5) =0 (mod 4).

Theorem 1.5. For any prime p > 5, a > 0 and n > 0, we have

2824(81)2" + 3+2) ¢"=2f; (mod 4).

n=0
Theorem 1.6. Forany primep >5 a>0,n>0and/=1,2,...p — 1, we have

3a
B (81)2"“@74 w142 = 2) =0 (mod 4).

Theorem 1.7. For all integers @ > 0 and n > 0,
12 3

B, (6n+5)=0 (mod 4),

123

B,, (12n+9)=0 (mod 4),

=123

B, (36n+27)=0 (mod 4),

=123

B, , (1087 +51) =0 (mod 4),
=123
B, , (108n + 87) =0 (mod 4),

2a+3
BIZ3<4 gass, | 32-3 . +3) 0 (mod 4).

Theorem 1.8. For any prime p > 5, a > 0 and # > 0, we have
3% +1
ZB12 . (361)2“74 + %) q"=2f; (mod 4).
n=0
Theorem 1.9. For any primep >5 a>0,n>0and/=1,2,...p — 1, we have
B2

7 (36 +0)+ 225 ) 20 (oa )

2. Preliminary results
We need the following few dissection formulas to prove our main results,

Lemma 2.1. The following two dissections hold:
fi _Sifs | o
i fofe A

s f4f6

4l
2 7
fl 2 12 f2

1.22)

(1.23)

(1.24)

(1.25)

(1.26)

1.27)

(1.28)

1.29

(1.30)

1.31)

(1.32)

Singular
overpartition
pairs without
multiples of &

155




AJMS
28,2

156

Hirschhorn, Garvan and Borwein [14] have proved Eqn (2.1). For proof of (2.2), see [15].

Lemma 2.2. The following two dissections hold:

L: fgfiz + f4f24
his f%fz;féf;; fzfsfstZ

_hfihy  fifify
M= r TR,

2.3)

2.4)

Eqn (2.3) was proved by Baruah and Ojah [16]. Replacing g by — ¢ in (2.3) and using the fact

that (—¢; —q), fui we get (2.4).

Lemma 2.3. The following two dissections hold:

fs _fifshefa | Jfofefis

B Pfifofe  Ffef

h_hfefy f2f8f12f48

fi fefsfs f4f6f16fZ4

@25)

26)

Xia and Yao [17] gave a proof of Lemma (2.3). Replacing ¢ by — ¢ in (2.5) and using the fact

that (—¢; —q), fui we get (2.6).
Lemma 2.4. The following two dissections hold:
f3 f4f6f12+ f4f6f8][24

1 foffa fofie

i _hfifl qufgfum
i fofsfa fifs

Xia and Yao [18] proved (2.7) by employing an addition formula for theta functions.

Lemma 2.5. The following two dissections hold:

5 _fsf§o+ f4f10f40

B P fe e

Eqn (2.9) was proved by Hirschhorn and Sellers [19].

Lemma 2.6. The following three dissections hold:

fog _ -9 2%

hfe=

One can see this identity in [20].

2.7)

2.8)

2.9)

2.10)



Lemma 2.7. (Cui and Gu [21, Theorem 2.2]). For any prime p > 5,
-1
- 321k 3924 (6k+1)p 3p%—(6k+1)p +p 1 521
fim 30 O ) 4 ),
kzl;ﬁ

where
p—1
#-1_] 6
6 ] -p-1
6

if p=1 (mod 6),

if p= —1 (mod 6).

Lemma 2.8. For any prime p and positive integer #,

n

A=A (mod p).

3. Proof of Theorem (1.1)
Setting i = 2,7 = 4,6 = 8 and £ = 3 in (1.8), we see that

i Al OV (a" )@ 0 )
pr F (@°,q®)f (4%, 02)(q;9)%,

By the definition of fie, b) and the well-known Jacobi triple product identity, we get

oo 2 5 2
83, JafelsS
ZBZA(”)‘I =2 - >
n=0 fleflﬁf?A
Substituting (2.7) into (3.2), we have

® 2 o4 (2 cd 2
B3 ona :f6f8f48f4f12 +2 f6f8f4f48
T Vs

Equating odd parts of the aforementioned equation, we obtain

3
ZB242n+1 fsf%f?“
n=0 flf8f12f6

Involving (2.11) in (3.4), we get

ZB“ @2n+1)q" —2f3f 4 (mod 4).
h
Employing (2.2) into (3.5), we arrive at
f4f6 f4f6f12

23242n+1 )¢ = +2q

mod 4).
n=0 fgle f2 ( )

@11)

3.1)

(32

3.3)

(34)

(3.5)

(3.6)
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Extracting the terms involving ¢*” from both sides of (3.6), we have

ZB“ dn+1)q"= % (mod 4). 3.7)
fl 6
Using (2.11) in the aforementioned equation, we obtain
4
ZB“ (4n+1) "—2f3f22 (mod 4). 338)
n=0 flfe
Substituting (2.1) into (3.8), we find that
Z L(dn+1)g" = f2f4+2f2f12 (mod 4), 3.9)
e frz fife
which implies
oo 3
Z 5181+ 1) ”—2f1f2 (mod 4). (3.10)
= Jo
Invoking (2.11) in (3.10), the equation reduces to
ZB“ (8n+1) "—zflfz (mod 4). (3.11)
n=0 f&
Employing (2.8) into (3.11), we obtain
ZB“ Bn+1)q"= fol il (mod 4). (3.12)
n=0 f@ﬁ%f%

Congruence (1.9) easily follows from the aforementioned equation.
From (3.6), we have

ni(; 54 (41 +3)q f%{?fé (mod 4). (3.13)
Using (2.11) in (3.6), we found
ZB“ (4n +3)¢" = fa’}iﬂz (mod 4). (3.14)
Substituting (2.5) into (3.14), we obtain
ZB“ (4n + 3)g" _ofshfifu i oS (mod 4). (3.15)

fofshefis " fafiefu

Extracting the terms involving ¢?**! from (3.15), dividing by ¢ and replacing ¢ by g, we
arrive at

- n— f3f4f24
Z LBn+7)q" = A (mod 4). (3.16)



Invoking (2.11) in (3.16), we get

ZB“ (8n+7) "—2f3fl2

2 I; (mod 4).

Employing (2.1) into (3.17), we obtain

ZB“ Bn+7)q"= fifs + 2qf12 (mod 4).
n=0 jé j&
Extracting the terms involving ¢** from both sides of (3.18), we have

ZB“ (16n+7)q" = fjf (mod 4).

1

Using (2.11) in (3.19), we arrive at

ZB“ (161 + 7)q" =2f, f; (mod 4).

n=0

Congruence (1.11) easily follows from (3.20).
From (3.18), we have

o 4
Y By (16n + 15)¢" = 2]% (mod 4).
n=0 2

Congruence (1.12) follows by extracting the terms involving ¢#*"! from (3.21).

From (3.15), we get

. w_ofshofsf 1
; (8n+3)g" = ot (mod 4).

Using (2.11) in (3.22), we obtain

n

3
ZB“ (8n+3)q" = fszf (mod 4).

Employing (2.1) into (3.23), we reduce that

}z_. f;]% jéj}z
;Bz4sn+3 2f2f12 T

(mod 4).

Extracting the terms involving ¢** from both sides of (3.24), we find that

n— j%fé
;B“ 16n + 3)q sz6

Substituting (2.5) into (3.25), we arrive at

n— f2f4f16f24 f§f§f48
;B“ (16n+3)¢" = Fifatn +2q i

(mod 4).

(mod 4),

317

8.18)

(3.19)

(3.20)

3.21)

(3.22)

3.23)

(3.24)

(3.25)

(3.26)
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which implies

> ikl
(3214 3)¢" = mod 4). 3.27
; g =2 (mod 4) (327)
Invoking (2.11) in (3.27), we obtain
2324 (32n+3)q" = fs (mod 4). (3.28)
n=0 fG

Congruence (1.13) follows by extracting the terms involving ¢#**! from (3.29).
Extracting the terms involving ¢?*™! from (3.26), dividing by ¢ and replacing ¢2 by ¢, we
arrive at

f1f4f24

2(32n+19)¢" = od 4). 3.29
Z; Jq' =27 (mod 4) (3.29)
Using (2.11) in (3.29), we get
3 B51(32n + 19)¢" =2/ fiz (mod 4). (3.30)
n=0

Congruence (1.14) follows from (3.30%
Extracting the terms involving ¢*” from both sides of (3.24), we have

2824(1614 +11)g "—2flff S (mod 4). 331)
n=0
Employing (2.6) into (3.31), we found
o 783 " fofofiely o Fofefahafu
;BZA(MM—%H)Q P +2q T (mod 4), (332
which implies
i (32n+11)¢"= ﬂﬁ]]‘é{“ (mod 4). 3.33)
n=0

Substituting (2.4) into (3.33), we get
fo 8]({132 f 2][6.7[24

;B“ (32n 4+ 11)gq 2f4f6 34+2q [ (mod 4), (3.34)
which implies
i (64n + 11)g 2f1f 4f 6 (mod 4). (3.35)
n—0 9 3 12
Using (2.11) in (3.35), we find that
i?ﬁj(&m 1) =27 (mod 4). (3.36)

n=0 f?:f:23



Employing (2.6) into (3.36), we get

oo -4 2
SOB 6t + 11)g =222 e qf oiols (mod 4) (3:37)
n=0 ‘ f6f8f48 f4f6f16f24
Extracting the terms involving ¢?* from (3.37) and replacing ¢ by ¢, we obtain
oo _83 f4_f8f2
> B, (128n+ 11)¢" =231 (mod 4). 3.39)
n=0 3Jatu
Invoking (2.11) in (3.38), we arrive at
ZB“ (1287 + 11)q" =2 @ (mod 4). (3.39)
n=0 f f

Congruence (1.15) follows by extracting the terms involving ¢?* ! from (3.39).
From (3.37), we have

) 2
> By (1281 + 75)q" 021 /S gfﬁfz“ (mod 4). (340)
=0 Jof 318 frz
Invoking (2.11) in (3.40), we obtain
> B (128n + 75)¢" =2/ fiz (mod 4). (341)
n=0

Congruence (1.16) follows from (3.41).
From (3.34), we arrive at

2324 (647 4 43)¢" _zf ;ﬂfﬂz (mod 4). (342
n=0

Using (2.11) in (3.42), we get
ZB“ (647 4 43)¢" w2 ofsfefie (mod 4). (343)

n=0 f

From the equations (3.14) and (3.43), we obtain (1.17).
Extracting the terms involving ¢**** from (3.9), dividing by ¢ and replacing ¢ by g, we
obtain

2
n—0 2J3

o 3
Z (8n+5)g" = 2? 1}’: 6 (mod 4). (344

Invoking (2.11) in (3.44), we get

iﬁij(&a +5)¢" =2f; fiz (mod 4). (345)

n=0

Congruence (1.10) follows by extracting the terms involving ¢! from (3.45).
From equations (3.45), (3.30) and (3.40), we obtain (1.18).
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4, Proof of Theorem (1.2)
Extracting the terms involving ¢** from (3.45) and replacing ¢° by ¢, we have

N B (16n + 5)¢" =2/ f; (mod 4). (4.1
n=0
define
> gng" = fifs. (42)
n=0
Combining (4.1) and (4.2), we find that
2324(1&4 +5)¢"=2> " g(n)g" (mod 4). 4.3)
n=0
For a prime, p > 5 or =2=U <, m <L
2 2 2
3k2+k+63m2+m 7p (modp) (44)

therefore,
(6k 4+ 1)° + 6 (6m +1)*=0 (mod p),

Since <‘76> = —1 the congruence relation (4.4) holds if and only if both £ =m = ipﬁ‘l
Therefore, if we substitute Lemma (2.7) into (4.2) and then extract the terms in which the

71) —7

powers of g are congruent to modulo p and then divide by q ', we find that

ol 2
$o(m T )=

n=0

which implies that
- =T\ ,
> g(Vn+ g )a =k (45)
n=0
and for # > 0,
) =T
glpn+p+ o7 =0, (4.6)

where 7 is an integer and 1 <7 < p — 1. By induction, we see that for » > 0 and a > 0,

g(pZ“n + » 2; 4_ 7) =g(n). @7

Replacing 7 by p**n + 71’2;—4_7 in (4.3), we arrive at (1.19).



5. Proof of Theorem (1. 3

Replacing #n by p?n + pi + 2 T in (4.7) and using (4.6), we find that for 7 > 0 and a > 0,

at+2
g<p2(1+2n+p2a+ll~+7p o > =0.

Comparing coefficients of ¢” from both sides of (4.3), we see that for # > 0,

B1(167 +5) =2g(n) (mod 4).

The required result follows from (5.1) and (5.2).

6. Proof of Theorem (1.4)
Setting 7 = 2,7 = 4,6 = 8 and £ = 5 in (1.8), we see that

w5 S@ (9@ )
MZ:O 24l F(@°,¢°)f(@®.4%°)(g:9)%,

By the definition of fie, b) and the well-known Jacobi triple product identity, we get

> EB‘S n 7f§fgf10f§0
Z a4 =5
n=0 fl-f2f16f40
Substituting (2.9) into (6.2), we have
i—sﬁ _f;ﬂof;‘ofﬁo +2 fifgffof%fgo zfifgffofgo

By (n)q" ==%577 q 2 5 072 3 2

n=0 faf16f a0 f§f16f40 faS16S10S %
Equating odd parts of the aforementioned equation, we obtain
f zf if gflof 4210

B @2n+1)qg" =2
Z 2al Fifefa

Involving (2.11) in (6.4), we get

> B, (2n + 1)¢" =2/, (mod 4).

n=0

Congruences (1.21) and (1.22) follow from the aforementioned equation.

7. Proof of Theorem (1.5)
From (6.5), we have

> By (8n+ 1)g" =27 (mod 4).

n=0

Employing Lemma (2.7) into (7.1), it can be see that

W
ZBz4< ( o )—i—l)q”Epr (mod 4),

n=0

G.1)

(52)

6.1)

6.2)

(6.3)

(6.4)

(6.5)

(7.1)

(7.2)
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which implies
= 2
Z <8p + ;_ >q" =2f; (mod 4).

Therefore,

. 3
B <8p2n 42 ;2) (87 +1) (mod 4).

Using the aforementioned relation and by induction on a, we arrive at (1.23).

8. Proof of Theorem (1.6)
Combining (7.2) with Theorem (1.5), we derive that for a > 0,

) 3a
N B, <8p2"“n 2 3+ 2) =2, (mod 4).

n=0

Therefore, it follows that

o 3a
Zéij (81)2"“ (pn+1) 2 3+ 2> =0 (mod 4).

n=0

where/=1,2,...,p — 1, we obtain (1.24).

9. Proof of Theorem (1.7)
Setting7 = 2,7 = 4,5 = 12 and k& = 3 in (1.8), we see that

= f(@h ) (@6 (@6
2B O = P P @

By the definition of f{a, b) and the well-known Jacobi triple product identity, we get

= B2 f§f4f§
; Pa 00" = i

Substituting (2.7) into (9.2), we have

5 3 2
§12,3 " — f4f6f12 f4f6ﬁ3f24
e I = e " A e fafof

Equating odd parts of the aforementioned equation, we obtain

8123 2 1 f2f3f4f12
; N T

Involving (2.11) in (9.4), we get

i v oS5 So i

—=123
2 ba (2n+1)g" = 7 s (mod 4).

n

(7.3)

9.1)

9.2)

9.9

94)

9.9)



Ramanujan recorded the following identity in his third note book: Singular

fo fifs | fi overpartition
w(g) = ]712 = f:TﬁZ +q f ©6)  pairs without
multiples of &
Substituting (9.6) into (9.5), we deduce that
232243 m+1)¢" = fefofiz +2qf6f12f18 (mod 4). 07) 165
fif /s

Congruence (1.25) easily follows from the aforementioned equation.
Extracting the terms involving ¢*"*' from (9.7), dividing by ¢ and replacing ¢°
by ¢, we arrive at

N B, (6n+3)q"= 2fo‘gf6 (mod 4). 938)
n=0 3

Using (2.11) in (9.8), we get
Z B 60+ 3)¢" =26 /1 (mod 4). 99)

n=!

Congruence (1.26) follows by extracting the terms involving ¢#**! from (9.9).
From (9.9), we can reduce that

S B (1204 3)" =21 /5 (mod 4). ©.10)
n=0

Employing (2.10) into (9.10), we get

ZBézf(lz + g =2l

+ 2qfy f1s (mod 4). (9.11)

Congruence (1.27) follows from (9.11).
Extracting the terms involving ¢***! from (9.11), dividing by ¢ and replacing ¢° by ¢, we
have

ZBff 36n + 15)¢" = 2f; /s (mod 4). 9.12)
Congruences (1.28) and (1.29) follow by extracting the terms involving ¢**' and ¢ +2
from (9.9).
From (9.12), we find that
S B2 (1080 + 15)¢" =24/, (mod 4). ©.13)
Combining (9.10) and (9. 1?3 %ve get
B, (1081 +15) =By, (121 +3) (mod 4). 9.14)
Using the aforementioned relation and by induction on @, we have
B, <4~32a+3n + w> =B, (121 +3) (mod 4). 9.15)

Using (1.28) in (9.15), we obtain (1.30).
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10. Proof of Theorem (1.8)
From (9.11), we find that

Y B, (361 + 3) "—2][”[?’ (mod 4).
pr fife

Invoking (2.11) in (10.1), we obtain

ZBff 36n +3)¢" =2f; (mod 4).

n=0

Employing Lemma (2.7) into (10.2), it can be see that
2 _
ZBm (36 <1m +2 5 1> + 3> q" =2f, (mod 4),

n=0

which implies

)

Z B (36p + 3@3; 1)>q" =2f (mod 4).

Therefore,

3
B (36p .30 s ”) =B, (361 + 3) (mod 4).

Using the aforementioned relation and by induction on «, we arrive at (1.31).

11. Proof of Theorem (1.9)
Combining (10.3) with Theorem (1.8), we derive that for a > 0,

Sa
ZBYZS (361)2"“% + M) =2f, (mod 4).
n=0

Therefore, it follows that
(pSa +

n=0

where/=1,2, ..., p — 1, we obtain (1.32).
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