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Weierstrass points on modular
curves Xo(/NV) fixed by the
Atkin-Lehner involutions

Mustafa Bojakli and Hasan Sankari
Mathematics, Tishreen University, Lattakia Governorate, Syria

Abstract

Purpose — The authors have determined whether the points fixed by all the full and the partial Atkin—Lehner
involutions Wy on Xo@V) for N < 50 are Weierstrass points or not.

Design/methodology/approach — The design is by using Lawittes’s and Schoeneberg’s theorems.
Findings — Finding all Weierstrass points on Xo(V) fixed by some Atkin-Lehner involutions. Besides, the
authors have listed them in a table.

Originality/value — The Weierstrass points have played an important role in algebra. For example, in
algebraic number theory, they have been used by Schwartz and Hurwitz to determine the group structure of the
automorphism groups of compact Riemann surfaces of genus g > 2. Whereas in algebraic geometric coding
theory, if one knows a Weierstrass nongap sequence of a Weierstrass point, then one is able to estimate
parameters of codes in a concrete way. Finally, the set of Weierstrass points is useful in studying arithmetic and
geometric properties of Xo(INV).
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1. Introduction
Let H be the complex upper half plane and I" be a congruence subgroup of the full modular
group SLy(Z). Denote by X(I') the modular curve obtained from compactification of the
quotient space I'\'H by adding finitely many points called cusps. Then X(I') is a compact
Riemann surface.

For each positive integer IV, we have a subgroup I'o(V) of SLy(Z) defined by:

(V) = {(i 2) € SLy(Z): ¢ = 0(mod N)}

and let Xo(V) = Xo(T(QV)).

A modular curve Xq(V) of genus g > 2 is called hyperelliptic (respectively bielliptic) if it
admits amap ¢: X — Cof degree 2 onto a curve Cof genus 0 (respectively 1). A point P of X,(V)
is a Weierstrass point if there exists a non-constant function f on Xy(V) which has a pole of
order < g at P and is regular elsewhere.

The Weierstrass points on modular curves have been studied by Lehner and Newman in
[1]; they have given conditions when the cusp at infinity is a Weierstrass point on Xy(V) for
N = 4n, 9, and Atkin [2] has given conditions for the case of N = %z where p is a prime > 5.
Besides, Ogg [3], Kohnen [4, 5] and Kilger [6] have given some conditions when the cusp at
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infinity is not a Weierstrass point on Xy(&V) for certain V. Also, Ono [7] and Rohrlich [8] have
studied Weierstrass points on Xo(p) for some primes p. And Choi [9] has shown that the cusp %
is a Weierstrass point of I';(4p) when p is a prime > 7. In addition, Jeon [10, 11] has computed
all Weierstrass points on the hyperelliptic curves X (V) and Xo(V). Recently Im, Jeon and Kim
[12] have generalised the result of Lehner and Newman [1] by giving conditions when the
points fixed by the partial Atkin—Lehner involution on Xy(/V) are Weierstrass points and have
determined whether the points fixed by the full Atkin—Lehner involution on Xy(V) are
Weierstrass points or not. In this paper, we have determined which of the points fixed by W
on Xy(V) are Weierstrass points and found Weierstrass points on modular curves Xy(V) for
N < 50 fixed by the partial and the full Atkin—Lehner involutions. The Weierstrass points
have played an important role in algebra. For example, in algebraic number theory, they have
been used by Schwartz and Hurwitz to determine the group structure of the automorphism
groups of compact Riemann surfaces of genus g > 2. Whereas in algebraic geometric coding
theory, if we know a Weierstrass nongap sequence of a Weierstrass point, then we are able to
estimate parameters of codes in a concrete way. Finally, the set of Weierstrass points is useful
in studying arithmetic and geometric properties of Xy(V).

2. Points fixed by the Atkin-Lehner involutions Qx
For each divisor QN with (@, %) = 1, consider the matrices of the form (

y .
Ne Qw> with

x,9,2,w € Z and determinant . Then each of these matrices defines a unique involution on
Xo(N), which is called the Atkin—Lehner involution and denoted by Wy. In particular, if
Q = N, then Wy is called the full Atkin—Lehner involution (Fricke involution). We also denote
by Wy a matrix of the above form.

Let X 8) (IV) be the quotient space of Xo(V) by Wy, Let go(V) and géQ(N ) be the genus of

XoV)and X g*) (N) respectively. Then gg) (N) is computed by the Riemann—Hurwitz formula as
follows:

g0 = 2a(N) +2 - (@),

where v(Q) = v(@; N) is the number of points on Xy(V) fixed by Wy, It is given by:
Proposition 2.1. [13] For each Q||N, v(Q) is given by

v(@) = (pH Cl(ﬁ)) h(—4Q)
IN/Q
+CH cz(p))h(—Q), if Q=4 and Q=3(mod4),
; if Q=2

) Z-JCQ:37

+pPJ, Q=1



where I(—Q) is the class number of primitive quadratic forms of discriminant —@Q, (f) is the
Kronecker symbol and the functions c{p) are defined as follows: fori =1, 2,

1+ (%?)7 if p#2 and Q=3(mod 4),

¢(p) =
—4Q .

1+ (T)’ if p#2 and Q#E3(mod 4),

1, if Q=1(mod 4) and 2||N,

0, if Q=1(mod 4) and 4|N,

2, if Q=3(mod 4) and 2||N,
6‘1(2) =

3+ (%Q), if Q=3(mod 4) and 4||N,

3(1+ (9 f Q=

+ 7 , Z_f Q:S(W’lOd 4) and 8|N,
_ (*Q) )=

2= 1+ - ) if Q=3(mod 4).

Now, we recall the algorithms for finding I'y(/V)-inequivalent points fixed by Wgon Xo(V)[14].
For a negative integer D congruent to 0 or 1 modulo 4, we denote by Qp the set of positive
definite integral binary quadratic forms:

Qx,y) = [p.q,7] = px* + quy + ry”*
with discriminant D = ¢* — 4p7. Then T'(1) acts on Qp by
Qey(x,y) = Q(sx + ty, ux + vy)

where y = (Z 2) A primitive positive definite form [p, ¢, 7] is said to be in reduced
form if
|g| <p<7r,and ¢ >0 ifeither |g| =p or p =7r.
Let Qp° C Qp be the subset of primitive forms, that is,
Qp°={[p,q,7| € Qp; ged(p,q,7) = 1}.

Then I'(1) also acts on Qp°. As is well known [15], there is a 1-1 correspondence between the
set of classes I'(1)\ Qp° and the set of reduced primitive definite forms.
Proposition 2.2. [14] for each p € 7 /2N Z, we define

Q°pwyp = {[PN,q,7] € Qp; f=q(mod 2N), ged(p,q,7) = 1}.
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Then we have the following:

(1) Definem = gcd(N, p, ﬂiﬁp) and fix a decomposition m = myms with my, ms > 0 and
gedmy, mo) = 1. Let

QOD.N,ﬂJHI.WLZ - {U)Na q, 7] S QOD,N,/i; ng(vav Q) - mlngd(Naqv 7") - mz}'

Then T'o(N) acts on Q°p N pm, m, and there is an 1-1 correspondence between

QoDﬁN.ﬂ,ml .mz/FO (N> - QOD/F(I)
[pN7Q77] _’[le,C],VNZ]

where N\N» is any decomposition of N into coprime factors such that gcd(mq, No) = gcd(ms,
Ny) = 1. Moreover we have a To(IN)-invariant decomposition as follows:

QOD,N.ﬂ = U QoDeNﬁvml g+ (1)

m=mymsy
mymy>0

ged(my mg)=1

() The inverse image [pNs, g, 7/N2) of any primitive form [p, q, 7] of discriminant D under
the 1-1 correspondence in (1) is obtained by solving the following equations:

p = ps* + qsu + ri*
q = 2pst + q(sv + tu) + 2ruv
r = pt* + qtv + 7.
satisfying p = Omod Ny), g = Bnod 2N), r = 0mod N) and (Z Z> er(1).

(3) we have the following T'o(N)-invariant decomposition.:

Qpng = U U ZQOD/IZ‘N.A' @
>0 A(2N)
PID  i=p(2N)
22=D [(4N)

Suppose @ > 5. Since W, has a non-cuspidal fixed point on Xo(V), then Wy, is given by an

elliptic element, that is,
_(Qx oy
Wo = (Nz —Quw )’

i 2Qx + /—4Q
B 2Nz

Then

is a point fixed by Wy, Conversely, every point fixed by W, has the form (3).



We note that each fixed point in (3) can be considered as the Hegneer point of a quadratic
form [Nz, —2Qx, —y]. So, if we can find I'y(V)-inequivalent quadratic forms [Nz, —2Qx, —y]
(by using Proposition 2.2), then we can produce I'g(V)-inequivalent points which are fixed
points as in (3).

Regarding the computation of points of Xy(V) fixed by Wy, we can follow the next
algorithms:

Algorithm 2.3. [14] The following steps implement as algorithm to find To(N)-inequivalent
points fixed by Wy where  # N:

Step I We search fmod 2N) such that p* =—4Q(mod 4N) with p =—2Qx(mod 2N) where
xeZ

Step II We set the decomposition as in (1) and (2) with D = —4Q.

Step III For each factor in the decomposition in Step II, we find the quadratic form
representations and taking the inverse of reduced form under the map which is
described in Proposition 2.2(2).

Step IV We form the elliptic elements corrvesponding to quadratic form representations
obtained in Step Il and find their Heegner points.
Algorithm 2.4. [12] When Q = N, the four steps above come as the following:
Step I Set (Q, ) = 4N, 0) o7 (Q, p) = (N, N) when (N = 3(mod 4)).

Step II Starting from a reduced form Q"% we first find a quadratic form [a, b, c)which in
SLy(Z)-inquivalent with 9" and ged(a, N) = 1.

Step III Set [A, B, C] = [a, b,c]* ([1( _01

congruence equation 2aX + b =—p(mod 2N). Then [A, B, C] belongs to Qg p.
Step IV Let t = _I%T/__Q- Then T'o(N)t gives a point fixed by Wy

) where K is a solution to the linear

3. Weierstrass points
In this section, we have computed Weierstrass points on Xy(V) for N < 50 fixed by all the
partial and the full Atkin—Lehner involutions in three cases:

(1) Modular curves of genus go(V) < 1.
(2) Hyperelliptic modular curves.
(3) Modular curves for N = 34, 38, 42, 43, 44, 45.
The number # of Weierstrass points is finite and satisfies
20+2<n<g’ g,
with #n = 2g + 2 if and only if X is hyperelliptic.
Next theorems help us to find Weierstrass points on modular curves Xo(V).

Theorem 3.1. (Schoeneberg). [16] Let X be a Riemann surface of genus g > 2. Let P be a
point fixed by an automorphism T of X, of order p > 1, let g* be the genus of XT = XI(T) .

IfgT # {}‘—;J the greatest integer of %, then P is a Weierstrass point of X.
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Theorem 3.2. [17] Let X be a Riemann surface of genus g > 2. Let T be an automorphism
with 5 or more fixed points. Then, each fixed point is a Weierstrass point.

Theorem 3.3. [17] If Pis not a Weierstrass point and T(P) = P, then there are at least two
and at most four points fived by T and the genus g* of XT = XI(T) is given by g7 = L%J, the
grealest integer of f—; Writing g = g'p + 7 there are only three possible cases:

1) r=0g=g"puol=2

@ r=54g=(g" +Hp-5o(T) =3.

@ r=p-lg=@E +1p-1LuD=4
where v(T) is the number of points fixed by T.

Theorem 3.4. [12] The points fixed by Wy for N < 50 are Weierstrass points on Xo(N) with
Zo(N) > 1 except possibly for the following values

N = 22,28,30,33, 34,37, 40, 42, 43, 45, 46, 48.

First, only a finite number of Weierstrass points can exist on Xo(V), and if go(V) < 1, then are
no such points at all. So we have the following theorem:

Theorem 3.5. The modular curves XoN) for N = 1 — 21, 24, 25, 27, 32, 36, 49 have no
Weierstrass points.

Second, Let go(V) > 2 and X,(V) be hyperelliptic modular curves. Then there are 19 values of
N, which belong to the set
{22,23,26,28,29,30,31, 33,35, 37,39, 40, 41, 46, 47, 48,50, 59, 71}.

Lewittes [17] proved that if Xy(V) is a hyperelliptic modular curve, then any involution on
Xo(V) either has no fixed points or has only non Weierstrass fixed points or is the hyperelliptic
involution. Jeon [11] found all Weierstrass points on the hyperelliptic modular curves Xo(V)
fixed by the hyperelliptic involution. So we have the following theorem:

Theorem 3.6. If Xo(N) is a hyperelliptic modular curve of genus goN) > 2, then only
290(N) + 2 points fixed by the hyperelliptic involution are Weierstrass points on Xo(N).

Third, in this case, we will study the modular curves Xy(V) for N = 34, 38, 42, 43, 44, 45.

Theorem 3.7. Let Xo(N) be bielliptic modular curves for N = 34,43, 45. Then, all points fixed
by any bielliptic involution Wy are not Weierstrass points.

Proof: Since Wy, is a bielliptic involution of Xo(V) of genus 3, it has 4 = 2g,(/V) — 2 points fixed
by W on Xo(N). And gé‘) (N) = {"@J = 1, thus by theorems 3.3 and 3.4, each of these points
is not a Weierstrass point.

Theorem 3.8. The modular curves XoN) for N = 38,42, 44 have Weierstrass points fixed by
some W

Proof: Since Wjg is a bielliptic involution of Xy(38) of genus 4, it has six points fixed by
Wig on Xy(38). So, by theorem 3.2, all these points are Weierstrass points (similarly

X3(38), X4 (42), X (44), X3 (44)). While g2(38) = {@J = 2. So, by theorem 3.3, the



modular curve X,(38) has non Weierstrass points fixed by W, (similarly
X3(42), X5(42), X2 (42), X% (42), X (44)). Finally, the modular curve Xo42) has no
points fixed by W5 and W,. Therefore, X,(42) has no Weierstrass points fixed by W,
and W,.

Now we will give an example by using Proposition 2.2 and Algorithm 2.3 to find
Weierstrass points on Xy(44) fixed by Wi;.

Example 3.9. Consider Xo(44) which is of genus 4. Since Wiy is a bielliptic involution on
Xo(d4) [18], it has six fixed points on Xo(44). Applying Step I and Step Il we have D = —44 and
P = +22,66(mod 176). First consider the case of f = 20, then we have decomposition as follows:

Q sy = saz = Qamumi.

We know that Q°_4,/T(1) = {[1,0,11],[3,2,4], [3, —2,4]}. Applying Step III we obtain by
taking the inverse image of veduced forms under the map which is described in Proposition
2.2(2) the following forms:

Q°_yamzi1/T(1) = {[132,22,1], [44, 22, 3]}.

Next, consider the case of p = —22, by the same way, we obtain the following forms:
Q°,44,44,,2271,1/F(1) = {[132, —22,1], [44, —22, 3]}.

When 8 = 66, we have the following
Q°_uags11/T(1) = {[1100,66, 1], [44, 66, 25]}.

Moreover in Step IV, the corresponding elliptic elements are given as follows:
11 -1 11 -3 -1 -1
Wl:(lsz —11)’ WZ:(44 —11)’ WS:(132 11)’

-1 -3 33 -1 33 -25
W4:(44 11)’ WS:(noo —33)’ Wﬁ:(44 -33)'

Then Weierstrass points (fixed points) ave:

_-bov-i _-l v _ 1. v-u
O T BT T T BT 13
_1l v-u _ 8, v _-3, vl
UELT T BT700 T 11000 T4 T4

In next example, we will use Algorithm 2.4 to find Weierstrass points on Xy(38) fixed by Was.

Example 3.10. Consider Xo(38) which is of genus 4. Since Wag is a bielliptic involution on
Xo(38) [18], it has six fixed points. Applying Step I and Step II, we have (Q, ) = (152, 0) and

o, ={[1,0,38],[2,0,19],[3,2,13], 3, —2,13], 6,4, 7], [6, =4, 7]}
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29 1 N o) Wo g(? (N) v(Q) Weierstrass points
’
1-21 <1 None
22 2 Wo, Was 1 2
Wi 0 6
23 2 Was 0 6
24-25 <1 None
70 2% 2 Wa, Was 1 2
Was 0 6
27 1 none
28 2 Wy, Wag 1 2
w; 0 6
29 2 Wag 0 6
30 3 Ws, We, Wag 1 4
Wa, Ws, Who 2 0
s 0 8 H+4e
31 2 Wiy 0 6
32 1 None
33 3 W3 2 0 None
M 0 8 e+ s Gl s+
Wss 1 4 None
34 3 Wo, Wiz 1 4 None
Wa
35 3 Ws 1 4 None
ws 2 0 None
Wss 0 8 \/3,;3? A Ym0 s — s
36 1 none
37 2 Wy 1 2
38 4 Wa 2 2
Wio 1 6
Wag 1 6
39 3 Ws 1 4
Wiz 2 0
Wao 0 8
40 3 Ws, Wy 2 0
Wi 1 4
-10 1 0 8
-120 10
41 3 Wa 0 8
42 5 W, Wy 3 0
Ws, We 2 4
Wor, Wiz
Wiy 1 8
43 3 Wis 1 4
44 4 Wy 2 2
W e
45 3 Ws, Wo, W5 1 4 none
46 5 W, 3 0 none
=3 = = Neni = = =
Wes 0 12 %*T%*i%JrT%ié*%i%* e i§+%té+ e, — g+
Wiy 2 4 none
7 4 Wi 0 10 G Gl G ) R R
48 3 W3, Wig 2 0 none
Wi 1 4 none
-6 -1 0 8 e e e IR
—-48 6
Table 1 49 1 none
Weierstrass points on 50 2 W;V Was (1) Z none .
XoV) for N <50 by Wy 0 Btm




we find quadratic forms [a, b, c] which is SLy(Z)-equivalent with lesz and gcd(a, 38) = 1 as
Sfollows (vespectively):

[Cl, b7 C] = {[17 07 38]3 [217 _381 19]7 [37 27 13]7 [37 _27 13}7 [77 107 9}7 [73 187 17]}

Applying Step III we have:

[170,38}:[1,0,38%(? _11>, 741, -76,2] = [21, -38,19] - (19 11)
y 5 ) = )y ° B 5 5 ,— ,
1938, -152,3 = 3,213 (2 "), [546.-80.3 =3, -2.13( T '),
21 /

[2737,—256,6}:[7,10,9]°(1 ‘11), 1297, —176,6] = [7,18,17] - (1 1)

From Step IV, the Weierstrass points are (respectively):

_ V=38 _2 V38 I
1= 38 2739 a1 =57 1938
20 38 128 =38 V=3

UTont e P T omrtomr T 1297+ 97

We list in Table 1 Weierstrass points on Xo(V) for N < 50 fixed by the Atkin-Lehner
involutions. We have used Maple and Wolfram Mathematica for the numerical computations:
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