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Abstract

Purpose – This paper aims mainly at introducing applied statisticians and econometricians to the current
research methodology with non-Euclidean data sets. Specifically, it provides the basis and rationale for
statistics in Wasserstein space, where the metric on probability measures is taken as a Wasserstein metric
arising from optimal transport theory.
Design/methodology/approach – The authors spell out the basis and rationale for using Wasserstein
metrics on the data space of (random) probability measures.
Findings – In elaborating the new statistical analysis of non-Euclidean data sets, the paper illustrates the
generalization of traditional aspects of statistical inference following Frechet’s program.
Originality/value – Besides the elaboration of research methodology for a new data analysis, the paper
discusses the applications of Wasserstein metrics to the robustness of financial risk measures.
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1. Introduction
Aswe are witnessing the current extension of statistical analysis to more general data sets in
data science, it is about time to let applied statisticians and econometricians be aware of this
useful and important phenomenon. The cornerstone of statistical theory for applications is
data. Traditionally, data are elements of Euclidean spaces which are naturally equipped with
Euclidean distances which are essential for analysis. Modern applications call for more
general data sets, such as histograms or non-Euclidean data. To use statistics to make
predictions and decisions with this new type of data, we need to extend traditional statistical
theory. The first basic ingredient to generalize is metrics on new data sets. This short note
aims simply at elaborating a bit on a popular new metric which applied econometricians can
learn to apply to their empirical applications from current research literature. This popular
new metric is calledWasserstein metric (distance) which is shown to be suitable for a variety
of non-Euclidean data space, such as Wasserstein space which is a space of probability
distributions equipped with a Wasserstein metric.

Simple and elementary examples will serve as illustrating the usefulness and rationale of
modern statistics with non-Euclidean data. The note elaborates theoretical aspects in simple
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settings, aswell asmentioning some concrete applications. Our purpose is simply introducing
applied statisticians and econometricians to modern data analysis based upon statistical
theory.

The paper is organized as follows. In Section 2, we elaborate on Wasserstein metrics in a
concrete data set consisting of (random) histogramswhich are probabilitymeasures, together
with the notion of Wasserstein metrics. In Section 3, we touch upon the starting point to
generalize traditional statistics in Euclidean spaces to Wasserstein spaces. In Section 4, we
mention an application of Wasserstein metrics to the robustness issue of financial risk
management. Section 5 provides the conclusions.

2. Wasserstein metrics on histogram data sets
We can take it as self-evidence that statistics is based on data. While we do have a general
theory of statistics to guide us each time we need statistics, there is something hidden in the
practices of statistics that we start looking at nowadays.

Traditionally, most of our data are Euclidean elements and in practicing statistics on Rk,
we take for granted their Euclidean distances k.kk, without bothering spelling out that our
data set is a metric space (which is, in fact, essential for all statistical investigations, such as
comparing data points, summarizing observed data sample).

Before our times, i.e. before we actually run into modern applications where our data could
be non-Euclidean, Maurice Frechet has forseen the future (i.e. nowadays) for us. Indeed,

recognizing that our traditional data space is the metric space ðRd;
��:kdÞ, Frechet (1906) first

axiomatized the notion of a metric on arbitrary spaces, to have rigorous metric spaces, not
only for mathematical functional calculus, but specifically for probability and statistics.

A well-known situation for all statisticians where “data points” are non-Euclidean is this.
Let X1, X2, . . ., Xn be an observed (IID) random sample drawn from a real-valued random
variable (population) X whose distribution function F is unknown. To improve the classical
practices (e.g. estimating some population parameters of interest), and to take into account
the advantages of computer science, the method of bootstrap was invented to improve the
accuracy of estimators and their confidence intervals. The method consists of creating new
“data points” via simulations.

Specifically, given the observed sample X1, X2, . . ., Xn, we obtain the known empirical
distribution function (but, ex ante, it is a random distribution function):

FnðxÞ ¼ 1

n

Xn

j¼1

1ð−∞;x�ðXjÞ

whose corresponding probability measure (law) is dFnð:Þ ¼ 1
n

Pn

j¼1vXj
ð:Þ (by Lebesgue-

Stieltjes Theorem) where vXj
ð:Þ ¼ 1ð:ÞðXjÞ is the (random) Dirac probability measure at Xj

on BðRÞ.
Having the known probability measure dFn, we can create simulated data from it via

F−1
n ðUÞ, where

F−1
n ð:Þ : ½0; 1�→R; F−1

n ðuÞ ¼ inffx∈R : FnðxÞ≥ ug

is the (univariate) quantile function of Fn andU is the random variable uniformly distributed
on [0,1].

Roughly speaking, a simulated sample (a new “data point”) is obtained as a result of
drawing with replacement n points from the set {X1, X2, . . ., Xn}, say,m times, resulting inm
sets Bk 5 {b1,k, b2,k, . . ., bn,k}, k 5 1, 2, . . ., m.
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Because of the drawings with replacement, the elements bj,k in each Bk could be equal, i.e.
appearing more than once in it, so that each new “data point” Bk is not really a subset of n
elements ofRas in set theory. Instead, eachBk is amultiset, i.e. a collection of points distinct or
not (multiplicities of occurences are allowed).

As a remark, such a collection of n points bj,k, j5 1, 2, . . ., n, can be viewed as a fuzzy subset
ofR, consisting of distinct points whose degrees of membership are equal to the ratios of their
multiplicity of occurence and the size n.

But, in the setting of statistics, it ismore representative if we view the new “data points”Bk

as a histogram (a random probability measure onBðRÞ), so that our new data set is a space of
(random) probability measures denoted asPðRÞwhere each “data point” is not an element of
the Euclidean space R, but is a probability measure on the metric space ðR; j:jÞ.

Data sets which are (random) probability measures on a metric space ðX ; ρÞ abound in
applications. As such, we need a suitable metric between probability measures.

Remark. But we know well that a large part of probability theory was about precisely the
metrization of weak convergence of probability measures on metric spaces, i.e. producing
metrics on the space of probabilitymeasures, see, e.g. Billingsley (1995), Parthasarathy (1967).
Canwe just pick some knownmetric among, say, Levy, Prokhorov, Total Variationmetrics to
use? Well, it depends on what we want our chosen metric to “behave!” So far, metrics on
probability measures are invented to study asymptotic sampling distributions, such as in the
Central Limit Theorem. Theywere not invented to handle data analysis, in whichwe need, for
example, to use a suitable metric to compare probability measures (as data points in our new
data set of an application). For example, if we observe three data “points” as three probability
densities f, g, h which are uniformly distributed on [�3, �2], [�2, �1] (Bernton et al., 2019;
Bhat and Prashanth, 2019), respectively, (and denoting F as the distribution function with
density f and dF its associated probability measure) then

TVðdF; dGÞ ¼ 1

2

Z
∞

−∞

jf ðxÞ � gðxÞjdx ¼ 1 ¼ TVðdF ; dHÞ

i.e. the total variation metric cannot capture the locations of these histogram data.

This is similar to the recognition that Hausdorff distance on subsets of a space cannot be
used when data are curved in the space, although curves are subsets. The reason is clear:
Hausdorff distance does not capture the structure of curves which is needed in data analysis
when curves are data “points”.

So, what are other metrics (on space of probability measures) which can be used for data
analysis/statistics with data sets as histograms?

We need to compare histograms (as data points) in applications when each histogram
represents the observed information about an “object”, or the return of a stock in financial
econometrics. Then it is obvious that we must take into account of their locations! On the
other hand, if data points are elements of an Euclidean space, e.g. x; y∈ ðR; j:jÞ, the suitable
metricWwewish to have should be a natural extension of the Euclideanmetric j.j onR, in the
sense thatW(vx, vy)5 jx� yj, i.e. when we identify a number x∈Rwith the Dirac probability
measure vx.

We are going to “mention” a suitable and popularmetricW(., .) on histogram data. It seems
important for applied statisticians and econometricians to have a good understanding of that
metric to feel comfortable to use it in real-world applications, rather than just take it for
granted!.

The following elaboration is for this purpose.
As far as history is concerned, it is fair to start withMaurice Frechet, the pioneer ofmodern

statistics.
In 1937, Levy (1937) defined several metrics on probability measures on BðRÞ. One is
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LðF;GÞ ¼ inffε > 0 : Gðx� εÞ � ε≤FðxÞ≤Gðxþ εÞ þ ε;∇x∈Rg

which metrized the convergence in distribution (or weak convergence of probability
measures, i.e. Fn →

w
F if Fn(x) → F(x), as n → ∞, for any x ∈ C(F), the continuity set of F(.))

i.e. Fn →
w
F5LðFn;FÞ→ 0.

Pursuing Levy’s work, in 1957, Frechet (1957) observed that Levy’s distance L(F,G) of the
distribution functions of two random variablesX andY involved F andG alone. He suggested
that a “global” distanceWH(X, Y) should involve the joint distribution function H(x, y) of the

random vector (X, Y), say, WH(F, G) where Hð:; :Þ : R2
→ ½0; 1� is the joint distribution with

marginals F, G, i.e. H(x, ∞) 5 F(x), H(∞, y) 5 G(y).
Another definition of Levy’s distance on distribution functions on R is of the form

W ðF;GÞ ¼ inffWH ðF;GÞ : H ∈CðF;GÞg

where C(F, G) is the set of joint distributions with marginals F, G (later in 1959, Abe Sklar
specified it as copulas).

But for W(F, G) to be a bona fide “metric” (in particular, W(F, G) 5 F 5 G), the above
infimum must be attained at some special H*.

Let’s see whether it is the case or not for the example given in Frechet (1957)

WH ðF;GÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EH ðX � Y Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
R2

ðx� yÞ2dHðx; yÞ
s

Remark. In 1969, Vassershtein (Wasserstein) (1969) proposed exactly

W1ðμ; νÞ ¼ inf

Z
R2

����x� y

����dλðx; yÞ : λ∈Πðμ; νÞ
� �

where Π(μ, ν) is the set of probability measures on BðR2Þwith projections (marginals) μ, ν.

Upfront: inf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EH ðX −Y Þ2

q
: H ∈CðF;GÞg

�
is attained atH*(x, y)5 F(x) ∧ G(y) because,

forU uniformly distributed on [0, 1],X¼D F−1ðUÞ,Y¼D G−1ðUÞ, the joint distribution function of
(F�1(U), G�1(U)) is H* and

W
H*

ðF ;GÞ ¼ W
H*

�
F−1ðUÞ;G−1ðUÞ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

�
F−1ðuÞ � G−1ðuÞ

�2

du

s

which is the minimum of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EHðX −Y Þ2

q
: H ∈CðF;GÞ

� �
.

It suffices to show that W1ðF;GÞ ¼ inffR
R2

��x− y
��dHðx; yÞ : H ∈CðF;GÞg is attained at

H*(x, y) 5 F(x) ∧ G(y). The same result holds for Wp, p ≥ 1, where

WpðF;GÞ ¼ inf

Z
R2

����x� yjpdHðx; yÞ : H ∈CðF ;GÞ
� �	 
1

p

Here are the details, see Vallender (1973), that the infimum of
R
R2 jx− yjdHðx; yÞoverH∈ C(F,

G) is indeed attained (at H(x, y) 5 F(x) ∧ G(y)).
Let X ;Y : ðΩ;A;PÞ→ ðR;BðRÞÞ be random variables with distributions F, G,

respectively.
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Since

jX � Y j ¼ ðX � Y Þ1ðX≥Y Þ þ ðY � XÞ1ðX<Y Þ

we let α 5 max(X � Y, 0) and β 5 max(Y � X), 0), so that

EjX � Y j ¼ Eαþ Eβ

Since α ≥ 0, we have

EðαjY ¼ yÞ ¼
Z ∞

0

Pðα > zjY ¼ yÞdz

Now, E(α) 5 EE(αjY), so that
Eα ¼

Z
∞

−∞

dGðyÞ
Z

∞

0

PðX � Y ≥ zjY ¼ yÞ ¼
Z ∞

−∞

dGðyÞ
Z ∞

0

PðX ≥ yþ zjY ¼ yÞdz ¼
Z

∞

−∞

dGðyÞ
Z

∞

y

PðX ≥ xjY ¼ yÞdx ¼
ZZ

ðx;yÞ;x>y

PðX ≥ y;Y < yÞdx ¼
Z

∞

−∞

PðX ≥ y;Y < yÞdy

Similarly,

Eβ ¼
Z

∞

−∞

PðY ≥ y;X < yÞdy

Thus,

EjX � Y j ¼
Z ∞

−∞

PðX ≥ y;Y < yÞdyþ
Z ∞

−∞

PðY ≥ y;X < yÞdy ¼
Z

∞

−∞

½PðX < y;Y ≥ yÞ þ PðY < y;X ≥ yÞ�dy

Now, look at the event (X < y, Y ≥ y).
Let A5 (X < y) and B5 (Y < y), then (X < y, Y ≥ y)5A ∩ Bc. ButA5 (Bc ∩A) ∪ (A ∩ B),

so that

PðX < y;Y ≥ yÞ ¼ PðAÞ � PðA \ BÞ ¼ PðX < yÞ � PðX < y;Y < yÞ
Thus,

EjX � Y j ¼
Z

∞

−∞

½PðX < yÞ þ PðY < yÞ � 2PðX < y;Y < yÞ�dy

Note thatP(X< y,Y< y) is the value of the joint distributionH(y, y) of the vector (X,Y), and it is
well known that H(x, y) ≤ F(x) ∧ G(y) which is a joint distribution with marginals F, G (from
Frechet’s work (1956) on correlation analysis with given marginals or from copula theory),
so that
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EjX � Y j≥
Z

∞

−∞

½FðyÞ þ GðyÞ � 2min Fð ðyÞ;GðyÞ�dy ¼
Z

∞

−∞

jFðyÞ � GðyÞjdy

by noting that jx � yj 5 x þ y � 2(x ∧ y).

Therefore,

W1ðdF ; dGÞ ¼ inffWH ðF;GÞ : H ∈CðF;GÞg≥
Z

∞

−∞

jFðyÞ � GðyÞjdy

But Z
∞

−∞

jFðyÞ � GðyÞjdy ¼
Z 1

0

jF−1ðuÞ � G−1ðuÞjdu

(by an “analytic” proof below) so that the infimum of
R
R2 jx− yjdHðx; yÞ over H ∈ C(F, G) isR 1

0
jF−1ðuÞ−G−1ðuÞjduwhich turns out to be a minimum sinceZ 1

0

jF−1ðuÞ � G−1ðuÞjdu ¼ EjF−1ðUÞ � G−1ðUÞj ¼ E
H*

jX � Y j

where H*(x, y) 5 F(x) ∧ G(y) is the joint distribution function of

(F�1(U), G�1(U)). Q.E.D.
Remarks.

(1) Let X¼D F ½−1�ðUÞ and Y ¼D G½−1�ðUÞ, we have dH* ¼ du◦ðF−1;G−1Þ−1, so that

H *ðx; yÞ ¼ dH *ðð−∞; x�3 ð−∞; y�Þ ¼ du
n
u : F−1ðuÞ≤ x;G−1ðuÞ≤ y

o
¼

dufu : u≤FðxÞ; u≤GðyÞg ¼ dufu : u≤FðxÞ∧GðyÞg ¼ FðxÞ∧GðyÞ

(2) Proof of

Z
∞

−∞

jFðyÞ � GðyÞjdy ¼
Z 1

0

jF−1ðuÞ � G−1ðuÞjdu

is as follows. The following is justified by Fubini’s theorem, namely if
R
A3Bjf(x, y)jd(x,

y) < ∞, then Z
A3B

jf ðx; yÞjdðx; yÞ ¼
Z
A

Z
B

f ðx; yÞdy
	 


dx ¼
Z
B

Z
A

f ðx; yÞdx
	 


dy

Now, for u ∈ (0, 1), we have

jF ½−1�ðuÞ � G½−1�ðuÞj ¼
h
F ½−1�ðuÞ � G½−1�ðuÞ

i
1fu:F ½−1�ðuÞ>G½−1�ðuÞgðuÞþh

G½−1�ðuÞ � F ½−1�ðuÞ
i
1fu:F ½−1�ðuÞ≤G½−1�ðuÞgðuÞ

So let
A ¼

n
u∈ ð0; 1Þ : F ½−1�ðuÞ > G½−1�ðuÞ

o
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Ac ¼
n
u∈ ð0; 1Þ : F ½−1�ðuÞ≤G½−1�ðuÞ

o
We have Z 1

0

jF ½−1�ðuÞ � G½−1�ðuÞjdu ¼
Z
A

jF ½−1�ðuÞ � G½−1�jðuÞjduþ
Z
Ac

jF ½−1�ðuÞ � G½−1�ðuÞjdu

where we can write

Z
A

jF ½−1�ðuÞ � G½−1�jðuÞjdu ¼
Z
A

Z F ½−1�ðuÞ

G½−1�ðuÞ
dx

" #
du

Now, observe that, by definition of the quantile functions, we have
G[�1](u) ≤ x5u ≤ G(x) (and of course, x < F [�1](u)5u > F(x)), so thatZ

A

Z F ½−1�ðuÞ

G½−1�ðuÞ
dx

" #
du ¼

Z
R

Z GðxÞ

FðxÞ
1AðuÞ1fFðxÞ≤GðxÞgðxÞdu

" #
dx

Similarly, Z
Ac

jF ½−1�ðuÞ � G½−1�ðuÞjdu ¼
Z
R

Z FðxÞ

GðxÞ
1AcðuÞ1fFðxÞ>GðxÞgðxÞdu

" #
dx

Hence,Z
R

Z GðxÞ

FðxÞ
1AðuÞ1fFðxÞ≤GðxÞgðxÞdu

" #
dxþ

Z
R

Z FðxÞ

GðxÞ
1AcðuÞ1fFðxÞ>GðxÞgðxÞdu

" #
dx ¼

Z
R

jFðxÞ � GðxÞjdx

Q.E.D.

Now, the distance W1(F, G) or W1ðdF ; dGÞ ¼
R 1

0
jF−1ðuÞ−G−1ðuÞjdu does take into

account the locations of the histogram data “points”. Indeed, for the histograms f, g, h in the
previous example (with associated distributions F, G, H, respectively), we haveW1(F, G)5 1
and W1(F, H) 5 5, showing that the histogram f is closer to g than h.

On the other hand,W1 is a natural extension fromEuclidean data points to histogram data
points. Indeed, for x; y∈R, we identify them as

vxðAÞ ¼ dFxðAÞ ¼ 1AðxÞ; vyðBÞ ¼¼ dGyðBÞ ¼ 1BðyÞ

so that

FxðtÞ ¼ vxðð−∞; t�Þ ¼ 1½x;∞ÞðtÞ

Since we consider real-valued random variable, i.e. with values in R ¼ ð−∞;∞Þ, their
quantile functions, e.g. F−1

x ð:Þ : ð0; 1Þ→R:
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F−1
x ðuÞ ¼ infft ∈R : FxðtÞ≥ ug ¼ x1ð0;1ÞðuÞ

and hence

W1ðvx; vyÞ ¼
Z 1

0

jF−1
x ðuÞ � F−1

y ðuÞjdu ¼
Z 1

0

jx� yj1ð0;1ÞðuÞdu ¼ jx� yj

Remarks.

(1) In 1969, Wasserstein Vassershtein (1969) considered W2 to investigate the
uniqueness of the stationary distribution of a Markov process. And in 1970,
Dobrushin (1970) used Wasserstein metric to investigate stochastic processes by
conditional distributions.

(2) In 1972, Mallows (1972) considered the same W2 � metric, without referring to its
existence years ago!

(3) Shorack andWellner (1986) usedWasserstein metrics to investigate the convergence
of empirical processes in their book in 1986.

(4) For general Wasserstein metrics in Optimal Transport Theory, see Villani (2003)

3. Typical positions in Frechet’s program
From a historical perspective, the pioneering work of Frechet (1948) can be viewed as the first
attempt to generalize probability background for statistics, such as general random elements
in arbitrary metric spaces, their typical positions (e.g. mean), general parameters, general
statistics and their convergences (for asymptotics, e.g. consistency of estimators).

Nowadays, we are witnessing efforts of theoretical statisticians to specify Frechet’s vision
while applied statisticians in various fields, such as economics and machine learning (ML),
started by implementing it in real-world applications, see, e.g. Bernton et al. (2019), Bhat and
Prashanth (2019), Bigot (2020), Chartier (2013) and Kiesel et al. (2016).

We will elaborate on these current efforts in the context of Wasserstein metric spaces as
data sets. For an invitation to the theoretical aspects of statistics in Wasserstein space, see
Panaretos and Zemel (2020).

Remark.AsBreiman (2001) spelled out the useful marriage between statistics andML, see,
e.g. Morizet (2020), Shalev-Shwartz and Ben-David (2014), Wasserstein metrics are used also
in ML, e.g. in WGAN.

As a starting point, let’s discuss the notion of “typical positions” of a random element X
with values in an arbitrary metric space ðX ; ρÞ.

According to Frechet (1948), generalized typical positions such as median andmean could
be defined via appropriate characterizations of classical notions on Euclidean spaces. For
simplicity, consider ðR; j:jÞ.

Let X be a real-valued random variable with distribution function F (and law dF). In
classical probability theory, the median m(X) of X is a value on R which is “equiprobable”
(always existed). The mean of X is the quantity EX ¼ R

R
xdFðxÞ which exists when this

integral is finite.
To generalize these typical positions to arbitrary metric spaces, we need to

“characterize” them.
First, a characterization of m(X) is obtained when statisticians use LAD (Least Absolute

Deviation) EjX � aj as error, say, in quantile regression.
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Specifically, when EjXj < ∞, we have

mðXÞ ¼ arg mina∈REjX � aj
Thus, for X being a random element with values in a metric space ðX ; ρÞ, it median could be
taken as argmina∈XEρðX ; aÞ.

Next, on ðR; j; jÞ, when EjXj2 < ∞, using mean squared error (MSE), we have

EX ¼ arg mina∈EðX � aÞ2

However, asmentioned by Frechet (1948), a better characterization ofEX., whenEX exists (i.e.
EX < ∞) with EX2 finite or not, is this

EX ¼ arg mina∈E
h
ðX � aÞ2 � X 2

i
noting that the minimizers of a→ E(X� a)2 and of a→ E [(X� a)2� X2] are the same, since
(X � a)2 � X2 differs from (X � a)2 only by a constant X2 (not depending on a∈R).

But the advantage is that, since

jðX � aÞ2 � X 2j ¼ ja2 � 2aX j≤ a2 þ 2jakX j

we have Ej(X � a)2 � X2j < ∞ when EjXj < ∞.

Consider now the situation in statistics where our random element of interest is
Xð:Þ : ðΩ;A;PÞ→ ðX ;BðXÞÞ, whereBðXÞ is the Borel σ� field generated by the topology of
the metric ρ on X. To be specific, let X be the space PðRÞ of probability measures dF on
ðR;BðRÞÞ having second finite moment, i.e.

R
R
x2dFðxÞ < ∞ and let ρ 5 W be the

Wasserstein metric on X ¼ PðRÞ, i.e. W 2
2ðdF ; dGÞ ¼

R 1

0
jF−1ðuÞ−G−1ðuÞj2du.

This corresponds to the situation where our data space isPðRÞ (histogram data) equipped
with a Wasserstein metric.

Remark. The metric space ðPðRÞ;W Þ is not a linear space, let alone a Banach space !
How the notion of “mean of X”, a typical position of X, is generalized? Well, let’s follow

Frechet!
A Frechet mean of X (or “barycenter”), for EX2 <∞, is an element ofX that is a minimizer

of the map a∈X →E½W 2
2ðX ; aÞ�.

Remark. A priori, the set of Frechet means of X is not a singleton.
The counter part of the “sample mean” of a random sample is the empirical Frechet mean,

i.e. the Frechet mean set of the empirical probability measure 1
n

Pn

j¼1vXj
of the IID sample X1,

X2, . . ., Xn from X.
The convergence of the sample mean to the population mean is called the Law of Large

Numbers (LLN) and is essential for statistics. Now, in the context of data space as aWasserstein
space of probabilitymeasures (on ametric space) equippedwith aWassersteinmetric, themeans
of the “population” form a subset of the data space and hence the counterpart of LLN would
involve estimation (from empirical Frechet mean set) of that subset, a problem of random set
estimation. For a “flavor” of the strong law of large numbers (SLLN) in similar contexts, see
Artstein and Wets (1995).

4. An improvement in financial risk management
Just to illustrate an application of statistics in Wasserstein space, we elaborate a bit here the
robustness of risk measures in financial econometrics.

Here is why Wasserstein metrics appear as an improvement in risk measure modeling.
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Consider the simplest case of modeling risk of a loss variable X. The loss function is
intrinsically a random variable. As such, it risk is a function of its distribution function F, e.g.
its value-at-risk is R(X) 5 F�1(α), so that the risk R(X) 5 w(F), a functional on distribution
functions of random variables. By robustness of a risk measure w(F), we mean the continuity

of w(.), i.e. Fn → F0w(Fn)→ w(F), as n→∞. Now Fn →
D
F is the convergence in distribution

which is equivalent to the weak convergence of their associated probability measures

dFn →
w
dF, which, in turn, is metrized by, e.g. a Wasserstein W2 � metric.

Thus, traditionally, the desirable robustness property of (financial) risk measures is
investigated under the (Euclidean metric-based) of some metrics on the set of probability
measures (e.g. on R).

Now Wasserstein metrics are also metrics on the set of probability measures (as models
for building risk measures) with an apparent possible advantage (as compared to other such
metrics), namely they do take into account of the geometry of the underlying sample spaces.
As such, we are actually witnessing such a revolution in financial risk management with the
use of Wasserstein metrics replacing previous metrics on probability measures.

Specifically, a new robust risk measure should be a functional Rð:Þ : PðW Þ→R that is
continuous with respect to a W � metric, i.e.

μn →
W
μ0RðμnÞ→RðμÞ

What is new in risk models ? Answer: Replacing Euclidean metrics by Wasserstein metrics!
Why that’s a good thing to do? Let’s find out!

If X is the (combined) loss function of, say, an investment portfolio of the form
Pm

j¼1λjXj,

we can consider various riskmeasures forX, such as Value-at-Risk, conditional Value-at-risk,
etc . . .

Each individual loss function Xj as its probability measures μj (on R, for example) with
corresponding distribution function Fj. A risk model X could be proposed by using a copula
approach, resulting in a probabilitymeasure μwith corresponding distribution function F forX.

The approach to new risk measures consists of viewing the probability measures μj as
points of aWasserstein space and using theWasserstein barycenter b of μ0jswith weights λ

0
j0s.

A risk measure for X is a functional of distribution functions (such as the quantile function
F�1).

Now in the setting of Wasserstein risk measures, as mentioned before, the Wasserstein

value-at-risk is taken to be based on the quantile function F−1
b ð:Þ of the Wasserstein

barycenter b of μ0jswith weights λ0j0s.
The new types of risk measures are Wasserstein barycenter risk measures.
Remark.
ML or statistical learning should be viewed as complementary to “standard” statistics,

rather than “adversaries”, especially in the actual situation of big data.
The paper “Statistical modeling: The two cultures” of Breiman (2001) while distinguished

two different ways of doing statistics, could give the impression that standard statistics and
ML are separateways. In fact, if we look closely at them, not only they aim to solve (and apply)
to same problems, but also they complement each other, both in goals and techniques
(theories). As such, they are rather complementary. Thus, researchers who are familiar with
statistics should also look at available ML algorithms. It is just about the interesting and
useful phenomenon of the appearance of Wasserstein metrics in it.

It is so since essentially any statistical problems (treating in ML) involve the measure of a
distance between probability measures.
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Without going into details of unsupervised learning using Generative Adversary
Networks/algorithms (GAN), it suffices to mention the following.

In GAN, Kullback–Leibler (KL)-Divergence (or more general divergence measures) is used
to compare probability measures. But these divergence measures (inspired from statistics)
are applicable only for probability density functions (i.e. for absolutely continuous
probability measures), in one hand, and, on the other hand, exhibit some undesirable
properties with regard to computations and interpretations.

It turns out that another metric can replace divergences to avoid these undesirable
properties, and it is precisely a Wasserstein metric, leading to the WGAN!

This is a significant new application of Wasserstein metrics in unsupervised ML, since the
training algorithm involves adistancebetweenprobabilitymeasures, for comparision. It illustrates
again the need to consider, not only a metric between probability measures, but a good one!.

Now let turn to Wasserstein distance in risk analysis
From the setting of law invariance, we see that (financial) risk measures are based on

(model) distributions of loss random elements (in the Euclidian case) and probability
measures (in the general Polish space case). Such risk measures are estimated from historical
data involving empirical probability measures. The problem of robustness of risk measures
just involves comparisons of probability measures (e.g. deviation between true but unknown
law of the loss variable and its estimate empirical version) and hence requires some
appropriate probabilitymetric, especially, robustness is about the continuity of riskmeasures
as functions of their underlying probability measures.

How Wasserstein metrics appear naturally in risk analysis?
Let X be a (nonnegative) loss random variable, say, in actuarial science, with distribution F.

According to the distortion principle, the risk premium calculation is based upon the functional

CgðXÞ ¼
Z

∞

0

ðg◦PÞðX > xÞdx ¼
Z

∞

0

gð1� FðxÞÞdx

where g(.) is a concave distortion function.

Now, as a routine, expressing
R
∞

0
gð1−FðxÞÞdx as a double integral, and using Fubini’s

theorem to exchange the order of integration and the equivalence P(X< x)≤ u5x≤ F [�1](u),
we get the spectral representation of the distorted risk measure

CgðFÞ ¼
Z 1

0

F ½−1�ðuÞg0ð1� uÞdu

The robustness of Cg(.) can be carried out as the continuity of this functional with respect to
some metric of the appropriate set of probability measures dF.

Now, observe that for distributions F, G such that
R
R
jxjpdFðxÞ < ∞,

R
R
jxjpdGðxÞ < ∞

and g0 ∈Lqð½0; 1�; duÞ, with p > 1, 1
p
þ 1

q
¼ 1, we have, in view of Holder’s inequality:

jCgðFÞ � CgðGÞj ¼ j
Z 1

0

F ½−1�ðuÞg0ð1� uÞdu�
Z 1

0

G½−1�ðuÞg0ð1� uÞduj ¼

j
Z 1

0

h
F ½−1�ðuÞ � G½−1�ðuÞ

i
g0ð1� uÞduj≤

Z 1

0

����g0ð1� uÞjqdu
	 
1

q

# Z 1

0

����F ½−1�ðuÞ � G½−1�ðuÞjpdu
	 
1

p

¼ kg0kqWpðdF ; dGÞ
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The above inequality suggests the use of Wasserstein metric in the study of robustness of
risk measures.

Remark. Moreover, the same suggestion can be applied to model ambiguity where,
according to decision theory, ambiguity refers to the uncertainty in considering a baseline
model F for the loss variable in consideration (based upon historical data, of course). Model
ambiguity is investigated by forming some ambiguity set of probability measures “around
dF”, i.e. by specifying a ball centered at dF, which requires a metric on probability measures.
Various reasons in the literature point to the appropriateness of using Wasserstein metrics
for robustness and model ambiguity. As such, it is about time to look closely at Wasserstein
metrics (from optimal transport) as an update statistical tool for empirical works.

5. Conclusions
Wasserstein spaces as data sets are of current interests in applications of a variety of fields
such as financial econometrics andML. SinceWasserstein data are non-Euclidean, traditional
data analysis and statistical methods cannot be directly applicable. Therefore, current
research efforts aim at developing new methodologies for data analysis and associated
statistical inference with such new data. In this paper, besides elaborating on Wasserstein
metrics, we outline some basic ingredients for statistics with Wasserstein data, focusing on
realizing the Frechet’s program.
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