# Money supply, inflation and output: an empirically comparative analysis for Vietnam and China

Pham Dinh Long and Bui Quang Hien Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam, and Pham Thi Bich Ngoc Hoa Sen University, Ho Chi Minh City, Vietnam Money supply, inflation and output

#### Abstract

**Purpose** – This study focuses on analyzing the relation between money supply, inflation and output in Vietnam and China.

**Design/methodology/approach** – Using the error correction model and the vector autoregression model (ECM and VAR) and the canonical cointegration regression (CCR), the study shows similar patterns of these variable relations between the two economies.

**Findings** – The study points out the difference in the estimated coefficients between the two countries with different economic scales. While inflation in Vietnam is strongly influenced by expected inflation and output growth, inflation in China is strongly influenced by money supply growth and output growth.

**Originality/value** – To the best of the authors' knowledge, this is the first empirical and comparative research on the relation between money supply, inflation and output for Vietnam and China. The study demonstrates that the relationship between money supply, inflation and output is still true in case of transition economies.

Keywords Money supply, Inflation, Output, Monetary policy Paper type Research paper

#### 1. Introduction

During economic transition, China has been considered a leader among socialist countries that have successfully transformed the economic model from a planned economy to a marketoriented economy. Economic reform is urgent and under pressure when the economy suffers serious crises. This reform is similar in Vietnam, but Vietnamese reform is 10 years later than Chinese one (1978 in China, 1986 in Vietnam) (Ma, 1999; Dao and Vu, 2008). It can be said that economic reform in China has provided some experience and creates motivation for many countries to conduct similar transitions. However, China and Vietnam are the only two countries that have been transformed from a planned economy to a market-oriented economy while keeping their own orientations. In the 1980s, apart from changing the political system, the Soviet Union and Eastern European countries have shifted to the market economy. In the area of monetary policy, China and Vietnam also have a thorough transition from one-tier bank system – which holds full control of the national financial system to two-tier bank system – by splitting into central banks and commercial banks, providing credit services for specific industries (Ma, 1999; Oanh, 2001; Dao and Vu, 2008). This change helps the

#### JEL Classification — E3, E45, O11

© Pham Dinh Long, Bui Quang Hien and Pham Thi Bich Ngoc. Published in *Asian Journal of Economics and Banking*. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http:// creativecommons.org/licences/by/4.0/legalcode

*Funding:* This research is funded by Vietnam National Foundation for Science and Technology Development (NAFODSTED) under grant number 502.01-2018.316.



Asian Journal of Economics and Banking Emerald Publishing Limited 2615-9821 DOI 10.1108/AJEB-03-2021-0040

Received 25 March 2021 Revised 14 May 2021 Accepted 5 July 2021 instruments of monetary policy be activated and gradually take effect. Monetary turmoil phenomena created by mixed economies (systems including a planned economy and a market economy at the same time) have narrowed. Inflation is lowered and controlled to be more stable than before reform. Capital markets were formed after nearly a decade of economic reform (1990 in China, 2000 in Vietnam). On the other hand, Vietnam's accession to the World Trade Organization is 6 years later than China (China in 2001, Vietnam in 2007). These show that China always implements important steps in reform and achieves results before Vietnam.

There are similarities as well as differences in the economy between Vietnam and China (Duong and Le, 2007). Both countries pursue the market-oriented economy, the same pattern of economic reform, development and integration process. Particularly, Vietnam follows the socialist-oriented market economy. China follows a "socialist market economy with Chinese characteristics. The political systems of two countries have certain similarities. Similarities may come from the success of China's economic reform policies, and these policies are always ahead of Vietnam (Ma, 1999; Dao and Vu, 2008). Moreover, in terms of economics, if a country accepts and operates under a market mechanism, relations in that economy will also have to follow the rules of the market. This leads to similarities in results. However, the size of two economies is different. The capacity of influence on economics and politics is also different (Duong and Le, 2007; VNEP, 2016). Furthermore, in terms of geography and history, China is less influenced by political and economic changes in the world than Vietnam. In fact, China is an important element which contributes to the establishment of international relations in general and in the economic field in particular. In the opposite direction, Vietnam is strongly affected by these relations.

In the quantity theory of money (QTM), the relation between money stock (M) and price level (P) can be expressed through the equation MV = PY (Mankiw, 2016) where M is the money supply, V is the velocity of circulation of money, Y is the real output and PY is the nominal output. The velocity of circulation of money is defined as the average amount of one unit of money circulated in the economy to pay for goods and services during a given period of time. Gross domestic product (GDP) is chosen as the variable representing the output, and *P* is chosen as the deflator (GDP deflator). According to Chow and Shen (2005) mentioned the work of Friedman, there are limitations in the equation MV = PY because in practice this relation is not really accurate. In the equation, with Y held constant, P tends to increase as M increases; with M held constant, P tends to increase as Y decreases and with P held constant, Y tends to increase as M increases. In the long run, the QTM is limited for several reasons. First, interest rate affects V, and this effect may not be constant in the long run. Second, the equation mentioned can be transformed into M/P = Y/V. This equation describes a demand for money equation responding to changes in income. In fact, the demand for money equation is influenced not only by income but also by interest rate and other factors (m-p) = f(S, OC) where (m-p) denotes the real money demand and S, OC represents variables that show opportunity costs of holding money.

This study focuses on analyzing the relation of three macro-variables, including money supply real output and price level. Although this issue seems to be simple and obvious, previous studies about it are only conducted in other countries and China but not Vietnam (Chow and Shen, 2005; Aksoy and Piskorski, 2006; Budina *et al.*, 2006; Homaifar and Zhang, 2008; Haug and Dewald, 2010; Anh and Thuy, 2013; Truong, 2013). In addition, limited data can be a reason why empirical research on this issue has not performed in Vietnam in previous studies. What is the relation between these three variables when two countries have many similarities in terms of economics and politics but have different economic scales? This paper will examine the relationship between money supply, inflation and output in Vietnam during the period 1986–2016 and in China during the period 1978–2008. After 30 years of reform, the study aims to demonstrate the existence of the relation between these variables and expect a new finding when using new quantitative techniques in time series data

AJEB

processing. Accordingly, the study contributes to shed light on the interaction between variables mentioned in the area of monetary policy management.

The paper is organized as follows. Section 1 highlights briefly the achievement of economic reform as well as the similarities and differences in the economy between Vietnam and China. This section also mentions the QTM, MV = PY and its limitation. Section 2 presents the methodology in the error correction model (ECM) following vector autoregression model (VAR) structure and canonical cointegration regression (CCR) for the multivariate variable. From this, the model specifications and data source are described in Vietnam and China case studies. The result of empirical study is presented in Section 3, which discusses the outcomes. One interesting result is that the different parameters of estimation between two countries are with different economic scales. In Vietnam, the expected inflation and output growth have a strong impact on inflation. In contrast, the inflation in China is strongly affected by money supply to stimulate investment and boost economic growth in Vietnam is less effective than in China. In addition, the impact of income on money demand in Vietnam is much lesser than in Vietnam. The conclusion is shown in Section 4, which emphasizes some remarkable findings.

#### 2. Methodology

#### 2.1 Research model

Based on the equation MV = PY, the study proposes models with variables that can interact with each other. The error correction model and the vector autoregression model (ECM-VAR) are used, and then canonical cointegration regression (CCR) is applied with an expectation that regression results are reliable when the phenomenon of serial correlation and endogeneity is adjusted.

$$\begin{bmatrix} \Delta \log(P_t) \\ \Delta \log(Y_t) \\ \Delta \log(M2_t) \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \begin{bmatrix} \Delta \log(P_{t-1}) \\ \Delta \log(Y_{t-1}) \\ \Delta \log(M2_{t-1}) \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
(1)

#### 2.2 Data research

In Vietnam, data are collected from 1986 to 2016 from the World Bank (WB), the International Monetary Fund (IMF), the State Bank of Vietnam (SBV) and Asset Macro in the UK (http://assetmacro.com). GDP and consumer price index (CPI) are chosen as variables representing the output variable (symbol *Y*) and the price variable (symbol *P*). GDP is collected directly from World Development Indicators (WDI) of WB with the original price in the base year 2010. The CPI is taken from the IMF with the comparative price of 2010 for the period 1995–2016. For the period 1986–1994, the CPI is collected from the IMF with the comparative price of 2005 and transferred to the original price of 2010 by applying the author's formula (3). *Y* and *M*2 variables are valued variables. The CPI variable is in percentage form. *M*2 money supply is collected from the IMF, SBV and Asset Macro with comparison.

In China, variables including M2 money supply, the retail price index and GDP are used to represent money supply M2, price level P and output Y. The data are derived from the study of Chow and Shen (2005) for the period 1952–2002 and from China Statistical Yearbook of the National Bureau of Statistics (NBS) of China for the period 2003–2008. The data for the period 1952–2002 are taken from the NBS, but estimates are similar to the methods that the author used when the data are not directly available (see data description of Chow and Shen (2005)).

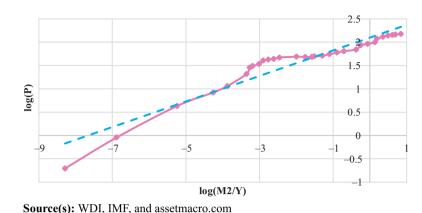
optio

$$CPI(t)_{ss2010} = \frac{CPI(t)_{ss2005}}{CPI(2010)_{ss2005}} \times 100$$
(2)

Money supply, inflation and output

## AIEB 3. Empirical result

#### 3.1 Unit root test and Johansen cointegration test


The study uses unit root test to test the stationary of variables, for the case of Vietnam (1986–2016) and China (1978–2008). At the first difference, results show that the null hypothesis of a unit root for all variables considered can be rejected. This means that variables stop at the first difference (Table 1). After testing for stationary, Johansen cointegration test is conducted. A value of 1% (or 5%) is greater than the value of trace statistics for both Vietnam and China (Tables 2 and 3). Results indicate that there exists a long-term relationship between variables  $\log(M2_t)$ ,  $\log(P_t)$ ,  $\log(Y_t)$ . This is the basis for further analysis.

#### 3.2 Volatility of price level and inflation

The equation MV = PY can be rewritten as the formula P = V(M/Y). Accordingly, the price level *P* is influenced by two factors, namely money supply and output. *M* variable is *M*2, and *Y* variable is the real GDP. *M*2 money supply is chosen because interest rate may have a stronger impact on *M*1 money demand than *M*2 money demand. Increasing in interest rate will make *M*1 money demand be likely to decrease due to the relationship with the profitability of deposit. In the case of Vietnam, Figure 1 shows that  $\log(P)$  has a long-term positive relationship with  $\log(M/Y)$  and has a nearly linear relation. The price level *P* is the consumer price index in Vietnam with the base year 2010. In the case of China, although the starting point of the curve in Figure 2 is different from Vietnam, the positive relationship between the price level *P* and *M*2/*Y* is still quite obvious. The price level *P* is the retail price index of the base year 1978 and is selected similarly to the research of Chow and Shen (2005).

|                                       |                                    | Vietnam (                                                                                        | 1986–2006)                                                                                           | China (19                                             | 978–2008)                                                |
|---------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|
|                                       | Variable                           | Zero difference                                                                                  | First difference                                                                                     | Zero difference                                       | First difference                                         |
| Table 1.<br>Results of unit root test | log(Y) log(P) log(M2) Note(s): *1, | -1.394<br>-2.727* <sup>10</sup><br>-1.248<br>* <sup>5</sup> , and * <sup>10</sup> denote the sig | $\begin{array}{c} -3.459^{*5} \\ -9.669^{*1} \\ -7.746^{*1} \\ \end{array}$ nificance at the 1%, 5%, | 0.840<br>-0.377<br>0.605<br>and 10% levels, respectiv | $-5.889^{*1}$<br>$-4.332^{*1}$<br>$-2.683^{*10}$<br>wely |

| Table 2.                                                                                                                 | The number of cointegrating relations                                                    | Eigenvalue                       | Trace statistics                                                          | 5 Percent<br>Critical value      | 1 Percent<br>Critical value |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------|----------------------------------|-----------------------------|
| Results of Johansen<br>cointegration test<br>forlog( $M2_t$ ), log( $P_t$ ),<br>and log( $Y_t$ ) for the case<br>Vietnam | 0<br>1<br>2<br><b>Note(s):</b> * <sup>1</sup> and * <sup>5</sup> denote the significance | 0.88<br>0.36<br>ce at the 1% and | 80.76<br>19.13* <sup>1</sup><br>6.24* <sup>5</sup><br>d 5% levels, respec | 29.68<br>15.41<br>3.76<br>tively | 35.65<br>20.04<br>6.65      |
|                                                                                                                          |                                                                                          |                                  |                                                                           |                                  |                             |
| Table 3.                                                                                                                 | The number of cointegrating relations                                                    | Eigenvalue                       | Trace statistic                                                           | 5 Percent<br>Critical value      | 1 Percent<br>Critical value |



Money supply, inflation and output

Figure 1. Plotting log(*P*) against log(*M*2/*Y*) for Vietnamese economy in the period 1986–2016

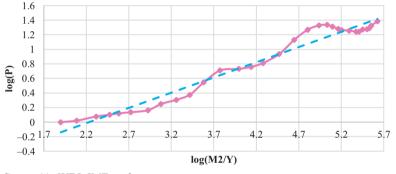



Figure 2. Plotting log(*P*) against log(*M*2/*Y*) for Chinese economy in the period 1978–2008

Source(s): WDI, IMF, and assetmacro.com

$$\log(P) = 4.8306 + 0.6302\log(M2/Y) \tag{3}$$

$$\log(P) = -0.9342 + 0.4182\log(M2/Y) \tag{4}$$

OLS regression results which show the impact of M2/Y on the level price P are presented in equations (3) and (4), respectively, for Vietnam in the period 1986–2016 and for China in the period 1978–2008 after 30 years of reform (Table 4). The estimated coefficients show no big significant difference between the period 1952–2002 and the period 1978–2008. Specifically, the elasticity of log (P2) is 0.374 in the period 1952–2002 (Chow and Shen, 2005) and 0.418 in the period 1978–2008. In Vietnam, the elasticity (0.630) of log (M2/P) against log (P) is larger than that of China but not so different. Lag 1 of the residuals of the corresponding OLS model is saved as an independent variable. This variable is used to represent the adjustment coefficient in the ECM-VAR for the inflation estimation model  $\Delta \log(P)$ . The regression results are rewritten as formulas (5) and (6) for Vietnam and China, respectively, with the same data length as in the Ordinary Least Squares (OLS) model. There are similarities in the regression results for both Vietnamese and Chinese economies. Results in Table 5 show the inflation in year t in Vietnam and China affected by last year's inflation and the corresponding increase in money supply in the year studying. However, the increase of money supply in the previous year does not suggest any impact on the current year's inflation. According to the

Fisher's QTM, price level changes are based on changes in the quantity of money. Changes in the price level P and changes in money supply are proportional. However, in fact, there is an impact lag between the time a policy is enacted and the time such policy influences the economy under changes in the economic situations. The formula does not mention the period of time required from the moment the central bank begins to implement the monetary policy instruments that affect macroeconomic factors in the economy. The study of Chen (2006) on the relation between the lag of money supply and inflation for Chinese economy indicates that inflation is affected by money supply with at least a five-month lag. Because the model is estimated by year, the increase in money supply will affect inflation in that year. The study of Chow and Shen (2005), which estimates inflation for Chinese economy during the period 1952–2002, also reaches the same conclusion. However, there is a difference in the adjustment coefficient towards the equilibrium in these two countries. In Vietnam, the adjustment coefficient of the ECM model is negative and not statistically significant. This suggests that the model, in the long run, is not self-adjusting to the equilibrium. Meanwhile, inflation estimation for Chinese economy indicates that in the long run, the model can be adjusted to the equilibrium with the adjustment factor of -0.223 at a 1% significance level. The regression shows no big difference between China and Vietnam when considering the effect of last year's inflation on current inflation. Specifically, the elasticities are 0.558 and 0.656 in China for the period 1952–2002 (Chow and Shen, 2005) and the period 1978–2008, respectively. In Vietnam, both estimated coefficients are not significantly different from each other (0.439) compared to the case of China. However, there are differences in the impact on inflation in these two countries when assessing the impact factors (0.617 is much higher than 0.216). This shows that inflation in Vietnam reacts more strongly to changes in the monetary policy than in China.

AIEB

$$\Delta \log(P)_t = -0.0145 + 0.6168\Delta \log(M2/Y)_t + 0.4392\Delta \log(P)_{t-1} - 0.2253\Delta \log(M2/Y)_{t-1} - 0.0732u_{t-1}$$
(5)

|                                                                        | Variable                                                                 | Vietnam (1986–2016)                         | China (1978–2008)                          | China (1952–2002)                                                       |
|------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|
| Table 4.           OLS model for the price           level for Vietnam | $\log(M2/Y)_t$<br>Constant<br>Number of Observations<br><i>R</i> squared | $0.630^{*1}$<br>$4.831^{*1}$<br>31<br>0.913 | $0.418^{*1} \\ -0.934^{*1} \\ 31 \\ 0.966$ | $\begin{array}{c} 0.374^{*1} \\ -0.713^{*1} \\ 51 \\ 0.965 \end{array}$ |
| and China                                                              | Note(s): * <sup>1</sup> denote the signif                                | ficance at the 1% level                     |                                            |                                                                         |

|                                                                                         | Variable                                                                                                                                                                                                                             | Vietnam (1986–2016)                                                                                                                   | China (1978–2008)                                                                                                                                       | China (1952–2002)                                                                                                                         |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Table 5.<br>Error correction model<br>for inflation in the case<br>of Vietnam and China | $\Delta \log((M2/Y)_t)$<br>$\Delta \log(P_{t-1})$<br>$\Delta \log((M2/Y)_{t-1})$<br>$u_{t-1}$<br>Constant<br>Number of observations<br><i>R</i> squared<br><b>Note(s):</b> * <sup>1</sup> , * <sup>5</sup> and * <sup>10</sup> denot | $\begin{array}{c} 0.617^{*1} \\ 0.439^{*5} \\ -0.225 \\ -0.0732 \\ -0.0145 \\ 29 \\ 0.880 \end{array}$ to the significance at the 1%, | $\begin{array}{c} 0.216^{*10}\\ 0.656^{*1}\\ -0.0629\\ -0.223^{*1}\\ -0.00123\\ 31\\ 0.643\\ 5\% \text{ and } 10\% \text{ levels, respect} \end{array}$ | $\begin{array}{c} 0.160^{\ast 1} \\ 0.558^{\ast 1} \\ -0.0307 \\ -0.169^{\ast 1} \\ 0.000951 \\ 49 \\ 0.658 \\ \text{tively} \end{array}$ |

$$\Delta \log(P)_t = -0.0012 + 0.2164\Delta \log(M2/Y)_t + 0.6556\Delta \log(P)_{t-1} - 0.0629\Delta \log(M2/Y)_{t-1} - 0.223u_{t-1}$$

(6) Money supply, inflation and output

### 3.3 Money supply, inflation and output

The relation between money supply, inflation and output are regressed by the ECM-VAR model. Tables 6 and 7 show the comparison of regression results for money supply, inflation and output in Vietnam during the period 1986-2016 and in China during the period 1978-2008 after 30 years of reform and the period 1952–2002 according to the research of Chow and Shen (2005). The results of the ECM-VAR model show that there is a downside when some important impacts are not statistically significant, and expected signs are different from expectation. For example, the impact of money supply on growth is not statistically significant for both Vietnam and China. Money supply and growth which have negative impacts on inflation are statistically significant at 5 and 10%, respectively in the case of Vietnam. Results of the autocorrelation test and the normality test of residuals are violated in some cases. In Vietnam, there is an autocorrelation phenomenon when considering LM(2) at a significance level of 5%. The residuals are not normally distributed when  $\Delta \log(P_t)$  is a dependent variable at a 5% significance level. In China for the period 1952-2002, autocorrelation occurs in LM(1) at the significance level of 1%, and the residuals are not normally distributed at a significance level of 5% when  $\Delta \log(P_t)$  and  $\Delta \log(Y_t)$  are considered dependent variables. For the period 1978-2008 (30 years after reform), results show that the residuals are normally distributed, and there is no autocorrelation in the model. However, the number of variables that have statistical significance is not like what expected. For example, while it is often discussed in the monetary policy that an increase in money supply brings upward pressure on inflation (Friedman, 1970), there is no such evidence of ECM outcomes. The study continues to run the CCR model with an expectation that regression results are reliable when the phenomenon of serial correlation and endogeneity is adjusted (Wang and Wu, 2012). The regression results suggest that there is a similarity in the relation between the above mentioned three variables for both economies. The interaction is consistent with the QTM. An increase in money supply leads to an increase in inflation and promotes growth. Inflation and growth have impacts on inflation and growth in the future. Money demand is affected by income. The results of the CCR model are shown in Table 8.

In terms of inflation, all variables, including  $M^2$  money supply growth, inflation and output growth, in the previous year influence inflation in the current year in both cases of Vietnam and China. First, the regression results show that inflation in Vietnam is strongly affected by inflation in the previous year. If inflation in the previous year is on an upward trend, it is likely that inflation in the following year will increase. On the other hand, due to a time lag in monetary policy implementation, inflation is difficult to control and may reverse in the next year. For the Chinese economy, last year's inflation also affects inflation in the current year, but this effect is weaker than that in Vietnam (0.180 < 0.381). This suggests that using the lagged value of inflation as expected inflation is inadequate since the estimated coefficient of Vietnam is almost two times higher than that of China. Second, output growth in the previous year increases pressure on inflation in the current year. This effect can be explained by the aggregate supply-aggregate demand model (AS-AD). When the economy has not reached potential output, an increase in the level of output will lead to an increase in the price level. The impact factor of output growth on inflation in Vietnam is approximately two times smaller than that of China (0.332 < 0.657). This implies that growth in Vietnam just partly influences inflation. Meanwhile, growth seems to have a huge impact on inflation in China. Third, a rise in M2 money supply growth in the previous year exerts upward pressure on the current year's inflation. In the money market, an increase in money supply will lead to a decrease in the base rate. Reduced interest rate helps stimulate investment and contribute to a

| AJEB                                                                                                                                                    | $\Delta \log(M2_l) \\ -0.0706 \\ 0.221 \\ 0.228^{*1} \\ 0.228^{*1} \\ 0.326 \\ 49 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\ 0.340 \\$ | 2                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                                                                         | China (1952–2002)<br>$\Delta \log(Y_I)$<br>-0.239<br>0.0599<br>$0.458^{*1}$<br>-0.175<br>0.0206<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                                                                                                                                         | 2) Solution of the structure $\Delta \log(P_l)$<br>$\Delta \log(P_l)$<br>$-0.16^{*1}$<br>$0.542^{*1}$<br>$0.137^{*10}$<br>$0.110^{*10}$<br>$-0.04^{*1}$<br>49<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 2 3 <b>2</b> 2                      |
|                                                                                                                                                         | Error correction model following VAR structure<br>$\Delta \log(M2_t)$ $\Delta \log(P_l)$<br>$-0.304^{*1}$ $-0.16^{*1}$<br>$0.111$ $0.542^{*1}$<br>$0.137^{*10}$<br>$0.137^{*10}$<br>$0.0748$ $-0.04^{*1}$<br>29<br>$p > \chi^2$<br>$p > \chi^2$<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|                                                                                                                                                         | Vietnam (1986–2016)<br>$\Delta \log(Y_{f})$<br>$\Delta \log(Y_{f})$<br>0.0103<br>0.0237<br>0.0237<br>0.0237<br>0.0237<br>0.0237<br>0.0237<br>0.0237<br>$0.0721*^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
|                                                                                                                                                         | $\begin{array}{c} \Delta \log(P_{f}) \\ -0.279^{*1} \\ 0.350^{*5} \\ -1.926^{*10} \\ -0.355^{*5} \\ -0.0790 \\ 29 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| <b>Table 6.</b><br>Error correction model<br>of $\Delta \log(M2_t)$ ,<br>$\Delta \log(P_t)$ , $\Delta \log(Y_t)$ in<br>Vietnam and China<br>(1952–2002) | VariableECT(-1) $ECT(-1)$ $\Delta \log(P_{l-1})$ $\Delta \log(P_{l-1})$ $\Delta \log(MZ_{l-1})$ $\Delta \log(MZ_{l-1})$ Number of observationsN(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |

**Note(s):** LM (lag): the *Lagrange Multiplier test* where the null *hybothesis* is that *there* is *no autocorrelation* between variables. N (1): *the Jarque-Bera test* for normality of the residuals where the hypothesis H0 is that the residuals are normally distributed.  $*^{1}$ ,  $*^{5}$ , and  $*^{10}$  denote the significance at the 1%, 5%, and 10% levels, respectively

 $\begin{array}{c} 0.572 \\ 0.544 \\ 0.095 \\ 0.794 \end{array}$ 

N(1) LLM(1) LLM(2) LLM(2)

 $\begin{array}{c} 0.000\\ 0.031\\ 0.172\\ 0.185\end{array}$ 

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vertication (J296–2010) Alog(N2,) Alog(N2,) Alog(P <sub>1</sub> ) Alog(Y <sub>1</sub> ) | Variable<br>ECT(-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | 11 1 1000 0001 0                                                           |                                                                                                            | ECM following VAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10000 02017 . 10                                                  |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ECT(-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Delta \log(P_t)$                                             | VIETNAT (1980–2016)<br>$\Delta \log(Y_t)$                                  | $\Delta \log(M2_t)$                                                                                        | $\Delta \log(P_t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta \log(Y_t)$                                                | $\Delta \log(M2_t)$                   |
| $ \begin{array}{ccccccc} & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 & 0.028 & 0.0748 & -0.12^{61} & 0.0308 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.028 & 0.0748 & 0.0748 & 0.0748 & 0.027 & 0.0748 & 0.027 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.0748 & 0.0748 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.0748 & 0.028 & 0.068 & 0.068 & 0.0668 & 0.0668 & 0.0668 & 0.0668 & 0.0768 & 0.0748 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{ccccc} & 0.257 & 0.027 & 0.111 \\ M_{2-1}^{(-1)} & -0.359^{*0} & 0.027 & 0.121 \\ M_{2-1}^{(-1)} & 0.079 & 0.028 \\ M_{2-1}^{(-1)} & -0.333^{*0} & 0.027 & 0.170 \\ 0.079 & 0.072 & 0.072 \\ \text{ar } & -0.079 & 0.072 \\ \text{ar } & 0.079 & 0.072 \\ \text{ar } & 0.079 & 0.072 \\ 0.074 & 0.079 & 0.0723 \\ 0.074 & 0.079 & 0.0723 \\ 0.074 & 0.073 & 0.073 \\ 0.066 & 0.072 & 0.045 \\ 0.066 & 0.072 & 0.066 \\ 0.544 & 0.088 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.073 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.731 & 0.038 \\ 0.066 & 0.073 & 0.038 \\ 0.066 & 0.073 & 0.038 \\ 0.066 & 0.073 & 0.038 \\ 0.066 & 0.0733 & 0.038 \\ 0.066 & 0.0733 & 0.038 \\ 0.066 & 0.0733 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & 0.038 & 0.038 \\ 0.068 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-0.279^{*1}$                                                  | 0.0103                                                                     | $-0.304^{*1}$                                                                                              | -0.0516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0180                                                           | $-0.140^{*1}$                         |
| $ \begin{array}{ccccc} W_{2,1}^{\gamma_{1,1}} & -1295^{*10} & 0.0567 & -2875^{*1} & 0.453^{*1} & 0.463^{*1} & 0.463^{*1} & 0.463^{*1} & 0.0721 & 0.0728 & 0.0721 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0728 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0738 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & 0.0748 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{ccccc} M_{2(-1)}^{Y_{1}(1)} & -1908^{*10} & 0.057 & -2878^{*1} & 0.458^{*1} & 0.468^{*1} & 0.468^{*1} & 0.028^{*1} & 0.028^{*1} & 0.028^{*1} & 0.028^{*1} & 0.028^{*1} & 0.028^{*1} & 0.028^{*1} & 0.028^{*1} & 0.028^{*1} & 0.028^{*1} & 0.078^{*1} & 0.028^{*1} & 0.078^{*1} & 0.028^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.068^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.068^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0.078^{*1} & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Delta \log(P_{t-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.350^{*5}$                                                   | 0.0237                                                                     | 0.111                                                                                                      | $0.464^{*1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-0.181^{*10}$                                                    | 0.113                                 |
| $ \begin{array}{cccc} M_{2,-1}^{M,2,-1} & -0.335^{65} & -0.00123 & -0.127 & 0.0208 \\ \text{if } & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{ccccc} M_{2,-1}^{M_{2,-1}} & -0.335^{45} & -0.00123 & -0.127 & 0.0208 \\ \text{if } & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta \log(Y_{t-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-1.926^{*10}$                                                 | 0.0597                                                                     | $-2.875^{*1}$                                                                                              | $0.857^{*1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.463^{*1}$                                                      | 0.373                                 |
| $ \begin{array}{ccccc} \text{int} & -0.0790 & 0.0718^{+1} & 0.0473^{+5} & 0.043 \\ \text{er of observations} & 29 & 29 & 29 & 31 & 31 \\ 0.016 & 0.572 & 0.669 & 0.145 & 0.731 \\ 0.0544 & 0.056 & 0.344 & 0.23 \\ 0.0544 & 0.056 & 0.344 & 0.23 \\ 0.0794 & 0.036 & 0.045 & 0.333 \\ 0.0794 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & 0.038 \\ 0.029 & 0.038 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ter of observations $29 = 29 = 0.0748 = -0.12^{84}$ $0.0748 = -0.12^{84}$ $0.0743 = 0.013^{84}$ $0.016$ $0.731 = 0.013^{84}$ $0.016$ $0.732 = 0.731 = 0.733$ $0.016 = 0.572 = 0.566$ $0.745 = 0.731 = 0.734$ $0.734 = 0.734$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.24$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.026$ $0.744 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0.734 = 0.734$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta \log(M2_{t-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.335^{*5}$                                                  | -0.00123                                                                   | -0.127                                                                                                     | 0.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0208                                                            | $0.374^{*1}$                          |
| The formula of the significance for the hypothesis is that there is $0.016$ $0.572$ $0.035$ $0.445$ $0.731$ $0.016$ $0.572$ $0.669$ $0.645$ $0.731$ $0.68$ $0.344$ $0.035$ $0.731$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.035$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0.734$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The formula of the formula of the significance of the sisticance of the significance of the significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0790                                                        | $0.0721^{*1}$                                                              | 0.0748                                                                                                     | $-0.12^{*1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0473*2                                                          | 0.0363                                |
| $\begin{array}{c ccccc} 0.006 & 0.572 & 0.683 & 0.445 & 0.731 & 0.068 & 0.045 & 0.068 & 0.045 & 0.068 & 0.045 & 0.068 & 0.045 & 0.068 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c cccc} 0.016 & 0.572 & 0.058 \\ 0.544 & 0.035 & 0.035 & 0.038 \\ 0.035 & 0.035 & 0.038 & 0.038 \\ 0.036 & 0.794 & 0.038 & 0.038 \\ 0.794 & 0.038 & 0.038 & 0.038 \\ 0.794 & 0.794 & 0.038 & 0.038 \\ 0.794 & 0.794 & 0.038 & 0.038 \\ 0.794 & 0.794 & 0.038 & 0.038 \\ 0.794 & 0.794 & 0.038 & 0.038 \\ 0.794 & 0.794 & 0.038 & 0.038 \\ 0.794 & 0.794 & 0.016 & 0.058 \\ 0.794 & 0.038 & 0.038 & 0.038 \\ 0.794 & 0.038 & 0.038 & 0.038 \\ 0.794 & 0.038 & 0.038 & 0.038 \\ 0.794 & 0.038 & 0.038 & 0.038 \\ 0.794 & 0.794 & 0.016 & 0.058 \\ 0.794 & 0.794 & 0.016 & 0.058 \\ 0.794 & 0.794 & 0.016 & 0.058 \\ 0.794 & 0.794 & 0.016 & 0.058 \\ 0.794 & 0.794 & 0.016 & 0.058 \\ 0.794 & 0.794 & 0.016 & 0.058 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.794 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.016 \\ 0.794 & 0.016 & 0.016 & 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number of observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29                                                             | 29                                                                         | 53                                                                                                         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31                                                                | 31                                    |
| Taple $V(2d) \otimes V(2d) $ | $\begin{array}{c} 0.34\\ 0.05\\ 0.74\\ 0.095\\ 0.79\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.095\\ 0.009\\ 0.095\\ 0.095\\ 0.009\\ 0.095\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.016                                                          | 0579                                                                       | $p > \chi^2$                                                                                               | 0.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.731                                                             | 0 595                                 |
| $\frac{1}{1000} 0.24$ $\frac{1}{1000} 0.794$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s): LM (lag): the Lagrange Multiplier test where the null hypothesis is that there is no autocorrelation between variables. N(1): the Jarque Bera test for normali:<br>0.055<br>0.794<br>0.739<br>0.833<br>0.1794<br>0.739<br>0.833<br>0.1794<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.730<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.739<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (I)M(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0100                                                           | 0.544                                                                      | 2000                                                                                                       | 044.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68                                                              | 070.0                                 |
| <b>Split</b> $D_{\rm CP4}$ (0.33)<br><b>Split</b> $D_{\rm CP4}$ (0.33)<br><b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c c} 0.794\\ \textbf{s}: LM (lag)t the Lagrange Multiplier test where the null hypothesis is that there is no autocorrelation between variables. N(1): the lagrange Multiplier test where the nypothesis is that there is no autocorrelation between variables. N(1): the lagrange Multiplier test where the nypothesis is that the residuals are normally distributed. *1, *3, and *10 denote the significance at the 1%, 5%, and 10% levels, respect of 0.794 (1000 \text{ MeV}). Tapped 2: 1000 \text{ MeV} (1000 \text{ MeV}) and 10\% levels, respect of 1000 \text{ MeV} (1000 \text{ MeV}). Tapped 2: 1000 \text{ MeV} (1000 \text{ MeV}), 1000 \text{ MeV} (1000 \text{ MeV}), 1000 \text{ MeV} (1000 \text{ MeV}). Tapped 2: 1000 \text{ MeV} (1000 \text{ MeV}), 1000 \text{ MeV} (1000 \text{ MeV}), 1000 \text{ MeV} (1000 \text{ MeV}). Tapped 2: 1000 \text{ MeV} (1000 \text{ MeV}), 1000 \text{ MeV} (1000 \text{ MeV}). Tapped 2: 1000 \text{ MeV} (1000 \text{ MeV}), 1000 \text{ MeV} (1000 \text{ MeV}). Tapped 2: 1000 \text{ MeV} (1000 \text{ MeV}), 1000 \text{ MeV}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L.M(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | 0.095                                                                      |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24                                                              |                                       |
| <b>als</b> . I.M (lag: the <i>Lagrange Multiplier test</i> where the null <i>hypothesis</i> is that <i>there</i> is <i>no autocorrelation</i> between variables. N(1): <i>the Jarque-Bera test</i> for normalises where the hypothesis H0 is that the residuals are normally distributed. *1, *5, and *0 <sup>0</sup> denote the significance at the 1%, 5%, and 10% levels, respect to more approximate the hypothesis H0 is the transmission of the end of the significance at the 1%, 5%, and 10% levels, respect to more approximate the hypothesis H0 is the transmission of the end of the en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>a</b> ): LM (lag): the Lagrange Multiplier test where the null hypothesis is that there is no autocorrelation between variables. N (1): the Jarque Bera test for normali si where the hypothesis HO is that the residuals are normally distributed. *1, *5, and *10 denote the significance at the 1%, 5%, and 10% levels, respect to $V(M) = V(M) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | 0 794                                                                      |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.833                                                             |                                       |
| Table         Error correction moc         of Δ log(M2         Δ log(Pt), Δ log(Yt)         Vietnam and Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 7.         Error correction model of Δ log(M2 <sub>i</sub> ), Δ log(P <sub>i</sub> ), Δ log(P <sub>i</sub> ), Δ log(P <sub>i</sub> ), Δ log(P <sub>i</sub> ), M log(P <sub>i</sub> ), Δ log(P <sub>i</sub> ), M log(P                                                                                                                                                                                                                                                                                                                                                                                                                                     | M(3)<br>M(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>esiduals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>inge Multiplier test</i> where<br>sis H0 is that the residu | the null <i>hypothesis</i> is that <i>t</i><br>als are normally distribute | <i>iere</i> is <i>no autocorrelatio</i><br>d. * <sup>1</sup> , * <sup>5</sup> , and * <sup>10</sup> denote | <i>n</i> between variables. N<br>e the significance at th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [(1): <i>the Jarque-Bera test</i> for<br>le 1%, 5%, and 10% level | r normality of the<br>s, respectively |
| Table         Error correction mode         of Δ log(Pl)         Δ log(Pl), Δ log(Pl)         Vietnam and Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 7.         Error correction model         of $\Delta \log(M2_\ell)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LM(3)<br>LM(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>mge Multiplier test</i> where<br>sis H0 is that the residu  | the null <i>hybothesis</i> is that <i>t</i><br>als are normally distribute | <i>iere</i> is <i>no autocorrelatio</i><br>d. $*^1$ , $*^5$ , and $*^{10}$ denote                          | <i>n</i> between variables. N e the significance at th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1): <i>the Jarque-Bera test</i> for<br>he 1%, 5%, and 10% level  | r normality of the<br>s, respectively |
| cutpu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 7.         Error correction model of $\Delta \log(M2_t)$ , $\Delta \log(P_t), \Delta \log(P_t), \Delta \log(P_t)$ , $\log(P_t)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LM(3)<br>LM(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>mge Multiplier test</i> where<br>sis H0 is that the residu  | the null <i>hypothesis</i> is that <i>t</i><br>als are normally distribute | <i>iere</i> is <i>no autocorrelatio</i><br>d. *1, *5, and * <sup>10</sup> denot                            | <i>n</i> between variables. N<br>e the significance at th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1): <i>the Jarque-Bera test</i> for<br>le 1%, 5%, and 10% level  | r normality of the<br>s, respectively |
| Table         Error correction mode         of Δ log(M2)         Δ log(Pt), Δ log(Yt)         Vietnam and Chir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rate 7.<br>Error correction model<br>of $\Delta \log(M2_\ell),$<br>$\Delta \log(P_\ell), \Delta \log(Y_\ell)$ in<br>Vietnam and China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LM(3)<br>LM(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>mge Multiplier test</i> where<br>sis H0 is that the residu  | the null <i>hypothesis</i> is that <i>t</i><br>als are normally distribute | <i>iere</i> is <i>no autocorrelatio</i><br>d. * <sup>1</sup> , * <sup>5</sup> , and * <sup>10</sup> denot  | <i>n</i> between variables. Net the significance at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1): <i>the Jarque-Bera test</i> for<br>he 1%, 5%, and 10% level  | r normality of the<br>s, respectively |
| Table<br>Error correction mode<br>of $\Delta \log(M2)$<br>$\Delta \log(P_t), \Delta \log(Y_t)$<br>Vietnam and Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 7.         Error correction model of Δ log(M2_l),         Δ log(P_l), Δ log(Y_l) in Vietnam and China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LM(3)<br>LM(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>mge Multiplier test</i> where<br>ssis H0 is that the residu | the null <i>hybothesis</i> is that <i>t</i><br>als are normally distribute | iere is <i>no autocorrelatio</i><br>d. * <sup>1</sup> , * <sup>5</sup> , and * <sup>10</sup> denot         | <i>n</i> between variables. N<br>e the significance at th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1): <i>the Jarque-Bera test</i> for<br>the 1%, 5%, and 10% level | r normality of the<br>s, respectively |
| Table<br>Error correction moc<br>of Δ log(M2<br>Δ log(P), Δ log(Y),<br>Vietnam and Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 7.<br>Error correction model<br>of $\Delta \log(M_{2_{\ell}}),$<br>$\Delta \log(P_{\ell}), \Delta \log(Y_{\ell})$ in<br>Vietnam and China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LM(3)<br>LM(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>mge Multiplier test</i> where<br>sis H0 is that the residu  | the null <i>hybothesis</i> is that <i>t</i><br>als are normally distribute | iere is no autocorrelatio<br>d. * <sup>1</sup> , * <sup>5</sup> , and * <sup>10</sup> denot                | <i>n</i> between variables. N<br>e the significance at th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1): <i>the Jarque-Bera test</i> for<br>ae 1%, 5%, and 10% level  | r normality of the<br>s, respectively |
| Table         Error correction model         of Δ log(M2)         Δ log(P_l), Δ log(Y_l)         Vietnam and Chir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 7.<br>Error correction model<br>of $\Delta \log(M_{2\ell})$ ,<br>$\Delta \log(P_{\ell}), \Delta \log(Y_{\ell})$ in<br>Vietnam and China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LM33<br>Not(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>mge Multiplier test</i> where<br>sis H0 is that the residu  | the null <i>hybothesis</i> is that <i>t</i><br>als are normally distribute | ere is no <i>autocorrelatio</i><br>d. * <sup>1</sup> , * <sup>5</sup> , and * <sup>10</sup> denot          | <i>n</i> between variables. N e the significance at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1): <i>the Jarque Bera text</i> for<br>te 1%, 5%, and 10% level  | r normality of the<br>s, respectively |
| Table<br>Error correction models $\Delta \log(M2)$<br>$\Delta \log(P_t), \Delta \log(Y_t)$<br>Vietnam and Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 7.<br>Error correction model<br>of $\Delta \log(M2_l)$ ,<br>$\Delta \log(P_l)$ , $\Delta \log(Y_l)$ in<br>Vietnam and China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LM(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>mge Multiplier test</i> where<br>sis H0 is that the residu  | the null <i>hybothesis</i> is that <i>t</i><br>als are normally distribute | ere is no <i>autocorrelatio</i><br>d. * <sup>1</sup> * <sup>5</sup> , and * <sup>10</sup> denot            | <i>n</i> between variables. N e the significance at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1): <i>the Jarque Bera test</i> for<br>he 1%, 5%, and 10% levels | r normality of the<br>s, respectively |
| Table<br>Error correction models $\Delta \log(P_t)$ , $\Delta \log(Y_t)$ , $\Delta \log(Y_t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 7.<br>Error correction model<br>of $\Delta \log(M_{2_{\ell}}),$<br>$\Delta \log(P_{\ell}), \Delta \log(Y_{\ell})$ in<br>Vietnam and China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LM(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>mge Multiplier test</i> where<br>sis H0 is that the residu  | the null <i>hypothesis</i> is that <i>t</i> also are normally distribute   | iere is no <i>autocorrelatio</i><br>d. * <sup>1</sup> , * <sup>5</sup> , and * <sup>10</sup> denot         | <i>n</i> between variables. N e the significance at | i(1): <i>the Jarque-Bera test</i> for level 1%, 5%, and 10% level | r normality of the<br>s, respectively |
| Table<br>Error correction mod<br>$\Delta \log(M2)$<br>$\Delta \log(P_t), \Delta \log(Y_t)$<br>Vietnam and Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 7.<br>Error correction model<br>$\Delta \log(M2_l), \Delta \log(Y_l)$ in<br>Victuam and China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LM(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>mge Multiplier test</i> where<br>ssis H0 is that the residu | the null <i>hybothesis</i> is that <i>t</i> also are normally distribute   | ere is no <i>autocorrelatio</i><br>d. * <sup>1</sup> * <sup>5</sup> , and * <sup>10</sup> denot            | <i>n</i> between variables. N e the significance at the significance at the second state of | (1): <i>the Jarque Bera test</i> for<br>le 1%, 5%, and 10% levels | r normality of the<br>s, respectively |
| Table<br>ror correction moc<br>of $\Delta \log(M2)$<br>$\log(P_t), \Delta \log(Y_t)$<br>Vietnam and Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table 7.<br>ror correction model<br>of $\Delta \log(M2_t)$ ,<br>$\log(P_t)$ , $\Delta \log(Y_t)$ in<br>Vietnam and China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LM(3)<br>Note(s): LM (lag): the <i>Lagra</i><br>residuals where the hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>mge Multiplier test</i> where<br>ssis H0 is that the residu | the null <i>hybothesis</i> is that <i>t</i> als are normally distribute    | ere is no <i>autocorrelatio</i><br>d. * <sup>1</sup> * <sup>5</sup> , and * <sup>10</sup> denot            | <i>n</i> between variables. N e the significance at | i(1): <i>the Jarque-Bera test</i> for<br>le 1%, 5%, and 10% level | r normality of the<br>s, respectively |
| Table<br>correction mod<br>of $\Delta \log(M2)$<br>$(P_t), \Delta \log(Y_t)$<br>etnam and Chir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table 7.<br>correction model<br>of $\Delta \log(M_{2_{\ell}})$ ,<br>$(P_{\ell}), \Delta \log(Y_{\ell})$ in definition of $P_{\ell}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Note(s): LM (lag): the $Lagra$<br>residuals where the hypothe<br>$\nabla$ E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>mge Multiplier test</i> where<br>ssis H0 is that the residu | the null <i>hybothesis</i> is that <i>t</i> als are normally distribute    | ere is no <i>autocorrelatio</i><br>d. * <sup>1</sup> * <sup>5</sup> , and * <sup>10</sup> denot            | <i>n</i> between variables. N e the significance at | (1): <i>the Jarque-Bera test</i> for<br>le 1%, 5%, and 10% level  | V s, respectively                     |
| Table<br>rection mode<br>$f \Delta \log(M2)$ , $\Delta \log(Y_i)$ and Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 7.<br>rection model<br>$f \Delta \log(M2_t),$<br>$\Delta \log(Y_t)$ in<br>m and China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\log \nabla$<br>$\log \nabla$<br>$\log \log (\log $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>mge Multiplier test w</i> here<br>sis H0 is that the residu | the null <i>hybothesis</i> is that <i>t</i> also are normally distribute   | iere is no autocorrelatio<br>d. *1, *5, and *10 denot                                                      | <i>n</i> between variables. N e the significance at | i(1): <i>the Jarque-Bera test</i> for level 1%, 5%, and 10% level | ioW<br>is, respectively<br>it         |
| Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 7.<br>ion model<br>$\log(M2_t)$ , iog $(Y_t)$ in<br>ind China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note (a): LM(3)<br>Note (a): LM(3)<br>Note (a): LM(1ag): the $Lagra = \frac{1}{2} \log  \nabla V ^2$<br>(a) $\log  \nabla V ^2$<br>Note the hypothe-<br>cesi duals where the hypothe-<br>Note (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>mge Multiplier test</i> where<br>sis H0 is that the residu  | the null <i>hypothesis</i> is that <i>t</i> are normally distribute        | iere is no autocorrelatio<br>d. *1, *5, and *10 denot                                                      | <i>n</i> between variables. N e the significance at | ie 1%, 5%, and 10% level                                          | Money infla                           |
| ble mode $M_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ble 7.<br>model<br><i>Y</i> <sub>2</sub> ),<br><i>Y</i> <sub>1</sub> ) in<br>China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Note (a): $I_{M(3)}^{(M(3))}$<br>Error corrections in the $I_{agrad}^{(M(3))}$<br>Note (a): $I_{M(3)}^{(M(3))}$<br>Note (b): $I_{M(3)}^{(M(3))}$<br>Note (c): $I_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>mge Multiplier test</i> where<br>ssis H0 is that the residu | the null <i>hybothesis</i> is that <i>t</i> als are normally distribute    | d. * <sup>1</sup> * <sup>5</sup> , and * <sup>10</sup> denot                                               | <i>n</i> between variables. N e the significance at | i(1): <i>the Jarque-Bera test</i> for levels levels               | Money s<br>inflatio                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>7.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{Tak} \\ Tak$ | <i>mge Multiplier test</i> where<br>sis H0 is that the residu  | the null <i>hybothesis</i> is that <i>t</i> als are normally distribute    | d. *1 *5, and *10 denot                                                                                    | <i>n</i> between variables. N e the significance at th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i(1): <i>the Jarque-Bera test</i> for levels                      | Money sup<br>inflation<br>out         |

AJEB

China (1978-2008)  $\begin{array}{c} -0.317 ^{*1} \\ 0.537 ^{*1} \\ 0.378 ^{*1} \\ 0.378 ^{*1} \\ 0.0014 ^{*1} \\ 30 \\ 0.554 \end{array}$  $\Delta \log(Y_t)$  $\begin{array}{c} 0.180^{*5}\\ 0.657^{*1}\\ 0.330^{*1}\\ -0.08^{*1}\\ -0.009^{*10}\end{array}$  $\Delta \log(P_t)$  $30 \\ 0.457$ CCR model  $\Delta \log(M2_t)$  $\begin{array}{c} 0.0192 \\ 0.497 \ast ^5 \\ 0.507 \ast ^1 \\ 0.085 \ast ^1 \end{array}$ Note(s): \*1, \*5, and \*10 denote the significance at the 1%, 5%, and 10% levels, respectively 28 0.713 Vietnam (1986-2016)  $\begin{array}{c} -0.0097 ^{*5} \\ 0.533 ^{*1} \\ 0.0296 ^{*1} \\ 0.023 ^{*1} \end{array}$  $\Delta \log(Y_t)$ 0.14528  $\begin{array}{c} 0.38^{*1} \\ 0.332^{*10} \\ 0.14^{*1} \end{array}$  $\Delta \log(P_t)$ -0.0106 $28 \\ 0.746$ ī Number of observations  $\begin{array}{l} \Delta \log(P_{t-1}) \\ \Delta \log(Y_{t-1}) \\ \Delta \log(M2_{t-1}) \\ \text{Constant} \end{array}$ R squared Variable Linear

 $\Delta \log(M2_t)$ 

 $\begin{array}{c} -0.474^{*5}\\ 1.387^{*1}\\ 0.601^{*1}\\ 0.0589\\ -0.005^{*1}\\ 30\\ 0.554\end{array}$ 

Table 8.

Canonical cointegration regression model of  $\Delta \log(M2_t), \Delta \log(P_t), \Delta \log(Y_t)$ and China (1978–2008) rise in the aggregate demand. In the AS-AD model, an increase in the aggregate demand results in an increase in the price level which in turn raises inflation. Moreover, this is consistent with Friedman's finding in which inflation is a monetary phenomenon that happens when the quantity of money increases more rapidly than output (Friedman, 1970). There is a difference in the regression results for Vietnam and China. In Vietnam, the effect of  $\Delta \log(M_{t-1})$  on  $\Delta \log(P_t)$  (0.137) is smaller than the effect of  $\Delta \log(P_{t-1})$  on  $\Delta \log(P_t)$  (0.381). In contrast, in China, the effect of  $\Delta \log(M2_{t-1})$  on  $\Delta \log(P_t)$  (0.330) is greater than the effect of  $\Delta \log(P_{t-1})$  on  $\Delta \log(P_t)$  (0.180). This interesting result shows that while money supply shocks influence inflation in Vietnam, there exist other factors that have strong impacts on inflation. Studies suggest that this result is appropriate for developing countries, like Vietnam. The regression results show that other effects come from expected inflation. In Vietnam, inflation is often volatile and sometimes the evolution of annual inflation is far away from inflation targeting (Do and Huong, 2014). This creates a psychological fear that inflation in the past will not be adjusted soon, continue to maintain and even increase in the next year. On the other hand, Vietnam has a relatively large open economy (VNEP, 2016). Inflation is not only affected by the implementation of fiscal and monetary policy and internal macroeconomic variables inside the economy but also external factors. External factors may be the exchange rate of dong against other currencies, world economic crises, political instability, etc. For instance, when China devalue its currency to boost exports, Vietnam also has to devalue the dong (VND) to increase the competitiveness of its exports. Meanwhile, the cost of domestic production increases due to a rise in the price of inputs. Currency devaluation can lead to an increase in domestic production costs. This can raise inflation. At the same time, forecasting scenarios and macroeconomic policies are difficult to anticipate. In the opposite direction, China is the second largest economy in the world. China's inflation is less affected by other factors than small economies' inflation. Obviously, if Vietnam devalues its currency first, it is unlikely that this will affect other major countries or make them reconsider their macroeconomic policies.

In terms of output, output growth is positively affected by M2 money supply growth and output growth in the previous year and is negatively affected by last year's inflation. First, results show that increasing money supply to stimulate investment and boost growth in Vietnam is less effective than in China (0.0296 > 0.378). This implies that the quantity of money injected into the economy to use for investment growth is restricted, or investment efficiency is not high. Second, the negative impact of inflation and the positive impact of M2money supply growth in the previous year are very small in the case of Vietnam. Meanwhile, the regression results for China show that the signs of these two estimated coefficients are similar to those for Vietnam, but the impact is high. Previous studies suggest that inflation has a negative impact on growth (Ghosh and Phillips, 1998; Dammak and Helali, 2017). In Vietnam, the elasticity of expected inflation on output growth is low. According to the regression results, this may be due to the strong impact of the expected output growth (0.533) and the impact of other factors other than money supply and inflation. Third, there is a similarity in the impact factor of the expected output growth for both Vietnam (0.533) and China (0.537).

## 4. Conclusion

After 30 years of reform, both Vietnam and China have made a successful revolution from a planned economy to a market economy, creating tremendous economic development. Through empirical evidence, the study demonstrates that the relationship between money supply, inflation and output is still true in the case of transition economies. The law of the market is correct, though the orientation of certain market economies is different from that of

Money supply, inflation and output AJEB developed countries with a long-standing market economy. In addition, the study shows that the degree of the interaction between money supply, inflation and output varies responding to particular conditions of two countries, in which both pursue a market-oriented mechanism but differ in the scale of the economy.

#### References

- Aksoy, Y. and Piskorski, T. (2006), "US domestic money, inflation and output", *The Journal of Monetary Economics*, Vol. 53, pp. 183-197, doi: 10.1016/j.jmoneco.2005.01.002.
- Anh, N.T. and Thuy, N.T. (2013), "Mối quan hệ tương tác giữa tỷ giá, sản lượng và lạm phát tại Việt Nam giai đoạn 2001-2011", Nghiên cứu kinh tế, Vol. 419, pp. 3-12.
- Budina, N., Maliszewski, W., de Menil, G. and Turlea, G. (2006), "Money, inflation and output in Romania 1992-2000", *Journal of International Money and Finance*, Vol. 25, pp. 330-347, doi: 10. 1016/j.jimonfin.2005.11.006.
- Chen, H. (2006), "An empirical study of Chinese inflation time lag", International Business Research, Table 2, pp. 42-47.
- Chow, G.C. and Shen, Y. (2005), "Money, price level and output in the Chinese macro economy", Asia-Pacific Journal of Accounting and Economics, Vol. 12, pp. 91-111, doi: 10.1080/16081625.2005. 10510653.
- Dammak, T.B. and Helali, K. (2017), "Threshold effects on the relationship between inflation rate and economic growth in Tunisia", *The Journal of International Economics*, Vol. 31, pp. 310-325, doi: 10.1080/10168737.2017.1289546.
- Dao, X.S. and Vu, Q.T. (2008), Đổi mới ở Việt Nam: Nhó lại và suy ngẫm, Nhà xuất bản tri thức.
- Do, T.P.H. and Huong, D.K. (2014), "Đánh giá sự biến động của lạm phát và ngụ ý trong điều hành chính sách tiền tệ tại Việt Nam", Tạp chí nghiên cúu kinh tế, Vol. 431, pp. 47-52.
- Duong, Van.A. and Le, M.D. (2007), *Economic Reforms in China and Vietnam: A Brief Comparison*, Cent Inst Econ Manag Hanoi.
- Friedman, M. (1970), *Counter-Revolution in Monetary Theory*, Occasional paper 33, Institute of Economic Affairs.
- Ghosh, A. and Phillips, S. (1998), Warning: Inflation May Be Harmful to Your Growth, Staff Pap 45, IMF, pp. 672-710, doi: 10.2307/3867589.
- Haug, A.A. and Dewald, W.G. (2010), Money, Output and Inflation in the Longer Term: Major Industrial Countries 1880-2001, p. 1760.
- Homaifar, G.A. and Zhang, N. (2008), "Long run relationship between money, output, and inflation", *Economia Internazionale/International Economics*, Vol. 61, pp. 687-709.
- Ma, J. (1999), The Chinese Economy in the 1990s, Springer.
- Mankiw, G. (2016), Macroeconomics, 9th ed., Worth Publishers, New York.
- Oanh, N.X. (2001), Đổi mới: Vài nét lớn Của một Chính sách kinh tế Việt Nam, Nhà xuất bản TP. Hồ Chí Minh.
- Truong, M.T. (2013), "Mối quan hệ giữa lạm phát và tăng trưởng kinh tế: Nghiên cứu thực nghiệm ở Việt Nam", *Phát triển kinh t*ế, Vol. 278, pp. 02-12.
- VNEP (2016), Phụ thuộc kinh tế giữa Việt Nam Trung Quốc, Nhà xuất bản tài chính, Hà Nội.
- Wang, Q. and Wu, N. (2012), "Long-run covariance and its applications in cointegration regression", *The Stata Journal*, Vol. 12, pp. 515-542.

#### Further reading

Chow, G.C. (1987), "Money and price level determination in China", *Journal of Comparative Economics*, Vol. 11, pp. 319-333.

- Knell, M. and Stix, H. (2005), "The income elasticity of money demand: a meta-analysis of empirical results", *Journal of Economic Surveys*, Vol. 19, pp. 513-533, doi: 10.1111/j.0950-0804.2005.00257.x.
- Kumar, S. (2014), "Money demand income elasticity in advanced and developing countries: new evidence from meta-analysis", *Applied Economics*, Vol. 46, pp. 1873-1882, doi: 10.1080/00036846. 2014.887195.
- Sriram (1999), Survey of Literature on Demand for Money: Theoretical and Empirical Work with Special Reference to Error-Correction Models, Work Pap No. 99/64, IMF, pp. 1-77.
- Zuo, H. and Park, S.Y. (2011), "Money demand in China and time-varying cointegration", China Economic Review, Vol. 22, pp. 330-343, doi: 10.1016/j.chieco.2011.04.001.

#### **Corresponding author**

Pham Thi Bich Ngoc can be contacted at: ngoc.phamthibich@hoasen.edu.vn

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm Or contact us for further details: permissions@emeraldinsight.com Money supply, inflation and output