TY - JOUR AB - Purpose The purpose of this paper is the dynamic analysis of the coupled rotation and vibration motion of a system containing a central rigid body to which is attached a flexible beam.Design/methodology/approach The methodology includes the Lagrange’s formulation by using the extended Hamilton’s Principle in conjunction with the assumed modes method to describe the system of equations by ordinary differential equations. The first unconstrained mode of vibration was considered as the solution for the transversal displacement. Such mode emerges as the eigenvalue problem solution associated to the dynamics of the system. The control strategy adopted is a nonlinear analogy of the linear quadratic regulator problem as the Riccati equation is solved at every integration step during the numerical solutions. This strategy is known as state-dependent Riccati equation.Findings By means of computational simulations, it was found the relation between controlled motion and inertia ratio.Research limitations/implications This work is limited to planar case and fixed hub.Practical implications Practical implications of this work realize the design of lighter yet dexterous structures.Originality/value The contribution of this paper is the position and vibration control of a flexible beam accounting for nonlinearity effects and the fact that the structure to where it is clamped has a comparable inertia. VL - 91 IS - 7 SN - 1748-8842 DO - 10.1108/AEAT-11-2017-0240 UR - https://doi.org/10.1108/AEAT-11-2017-0240 AU - Piro Barragam Vinicius AU - Fenili Andre AU - Milagre da Fonseca Ijar PY - 2019 Y1 - 2019/01/01 TI - Dynamics and control of a flexible rotating clamped-free beam by SDRE strategy T2 - Aircraft Engineering and Aerospace Technology PB - Emerald Publishing Limited SP - 1018 EP - 1026 Y2 - 2024/03/29 ER -