Books and journals Case studies Expert Briefings Open Access
Advanced search

Finding an optimal blade-profile to improving the performance of partially admitted turbines

Reza Aghaei Togh (Department of Aerospace Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran)
Mohammad Mahdi Karimi (Department of Mechanical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Publication date: 1 May 2020

Abstract

Purpose

This paper aims to present the designing and investigating various types of impulse blade profiles to find the optimal profile that has better performance than the first or original blade. The studied model is a turbine with an output power below 1 MW and a large pressure ratio up to 20, which is used to gain relatively high specific work output. As a result of its low mass flow rate, the turbine is used under partial-admission conditions. The turbine’s stator is a group of convergence–divergence nozzles that provide supersonic flow.

Design/methodology/approach

More than 10 types of two-dimensional blade profiles were designed using the developed preliminary design calculations and numerical analysis. The numerical results are validated using the existing experimental results. Finally, the case with improved performance is introduced as the final optimum case.

Findings

It was found that the performance parameters such as efficiency, power and torque are increased by more than 8% in the selected best model, in comparison with the original model. Moreover, the total pressure loss is 12% decreased for the selected model. Finally, the selected profile with superior performance is proposed.

Originality/value

Simultaneous numerical tests are conducted to examine the interaction of different supersonic blade profiles with the partially injected flow to the rotor.

Keywords

  • Blade profile
  • Partial admission
  • Supersonic turbine
  • Turbine’s performance

Citation

Togh, R.A. and Karimi, M.M. (2020), "Finding an optimal blade-profile to improving the performance of partially admitted turbines", Aircraft Engineering and Aerospace Technology, Vol. 92 No. 6, pp. 863-877. https://doi.org/10.1108/AEAT-06-2019-0132

Download as .RIS

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Please note you do not have access to teaching notes

You may be able to access teaching notes by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
If you think you should have access to this content, click the button to contact our support team.
Contact us

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you think you should have access to this content, click the button to contact our support team.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here