To read this content please select one of the options below:

Rapid trajectory optimization for hypersonic entry using convex optimization and pseudospectral method

Jinbo Wang (Department of Astronautics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China)
Naigang Cui (Department of Astronautics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China)
Changzhu Wei (Department of Astronautics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 1 May 2019

Issue publication date: 17 May 2019

342

Abstract

Purpose

This paper aims to develop a novel trajectory optimization algorithm which is capable of producing high accuracy optimal solution with superior computational efficiency for the hypersonic entry problem.

Design/methodology/approach

A two-stage trajectory optimization framework is constructed by combining a convex-optimization-based algorithm and the pseudospectral-nonlinear programming (NLP) method. With a warm-start strategy, the initial-guess-sensitive issue of the general NLP method is significantly alleviated, and an accurate optimal solution can be obtained rapidly. Specifically, a successive convexification algorithm is developed, and it serves as an initial trajectory generator in the first stage. This algorithm is initial-guess-insensitive and efficient. However, approximation error would be brought by the convexification procedure as the hypersonic entry problem is highly nonlinear. Then, the classic pseudospectral-NLP solver is adopted in the second stage to obtain an accurate solution. Provided with high-quality initial guesses, the NLP solver would converge efficiently.

Findings

Numerical experiments show that the overall computation time of the two-stage algorithm is much less than that of the single pseudospectral-NLP algorithm; meanwhile, the solution accuracy is satisfactory.

Practical implications

Due to its high computational efficiency and solution accuracy, the algorithm developed in this paper provides an option for rapid trajectory designing, and it has the potential to evolve into an online algorithm.

Originality/value

The paper provides a novel strategy for rapid hypersonic entry trajectory optimization applications.

Keywords

Citation

Wang, J., Cui, N. and Wei, C. (2019), "Rapid trajectory optimization for hypersonic entry using convex optimization and pseudospectral method", Aircraft Engineering and Aerospace Technology, Vol. 91 No. 4, pp. 669-679. https://doi.org/10.1108/AEAT-06-2018-0159

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles