To read this content please select one of the options below:

Evaluation and prioritization of technical and operational airworthiness factors for flight safety

Mehmet Burak Şenol (Department of Industrial Engineering, Gazi University, Ankara, Turkey)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 3 June 2020

Issue publication date: 16 June 2020

627

Abstract

Purpose

In this study, a multi-criteria decision-making (MCDM) approach for evaluating airworthiness factors were presented. The purpose of this study is to develop an acceptable rationale for operational activities in civil and military aviation and for design, production and maintenance activities in the aviation industry that can be used in-flight safety programs and evaluations.

Design/methodology/approach

In aviation, while the initial and continuing airworthiness of aircraft is related to technical airworthiness, identifying and minimizing risks for avoiding losses and damages are related to operational airworthiness. Thus, the airworthiness factors in civil and military aviation were evaluated under these two categories as the technical and operational airworthiness factors by the analytic hierarchy process and analytic network process. Three technical and five operational airworthiness criteria for civil aviation, three technical and nine operational airworthiness criteria for military aviation were defined, evaluated, prioritized and compared in terms of flight safety.

Findings

The most important technical factor is the “airworthiness status of the aircraft” both in civil (81.9%) and military (77.6%) aviation, which means that aircraft should initially be designed for safety. The most significant operational factors are the “air traffic control system” in civil (30.9%) and “threat” in the military (26.6%) aviation. The differences within factor weights may stem from the design requirements and acceptable safety levels (frequency of occurrences 1 in 107 in military and 1 in 109 in civil aircraft design) of civil and military aircraft with the mission achievement requirements in civil and military aviation operations. The damage acceptance criteria for civil and military aircraft are different. The operation risks are accepted in the military and acceptance of specific tasks and the risk levels can vary with aircraft purpose and type.

Practical implications

This study provides an acceptable rationale for safety programs and evaluations in aviation activities. The results of this study can be used in real-world airworthiness applications and safety management by the aviation industry and furthermore, critical factor weights should be considered both in civil and military aviation operations and flights. The safety levels of airlines with respect to our airworthiness factor weights or the safety level of military operations can be computed.

Originality/value

This is the first study considering technical and operational airworthiness factors as an MCDM problem. Originality and value of this paper are defining critical airworthiness factors for civil and military aviation, ranking these factors, revealing the most important ones and using MCDM methods for the evaluations of airworthiness factors for the first time. In civil aviation flight safety is the basic tenet of airworthiness activities in risk analysis, on the other hand in military aviation high levels of risks are to be avoided in peace training or operational tasks. However, even high risks have to be accepted during the war, if the operational requirements impose, as mission achievement is vital. The paper is one of a kind on airworthiness evaluations for flight safety.

Keywords

Citation

Şenol, M.B. (2020), "Evaluation and prioritization of technical and operational airworthiness factors for flight safety", Aircraft Engineering and Aerospace Technology, Vol. 92 No. 7, pp. 1049-1061. https://doi.org/10.1108/AEAT-03-2020-0058

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles