To read this content please select one of the options below:

Rotor aeromechanics study using two different blade property data sets

Jae-Sang Park (Department of Aerospace Engineering, Chungnam National University, Daejeon, Korea)
Young Jung Kee (Rotorcraft Research Team, Korea Aerospace Research Institute, Daejeon, Korea)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 3 October 2016

189

Abstract

Purpose

This paper aims to compare the comprehensive rotorcraft analyses using the two different blade section property data sets for the blade natural frequencies, airloads, elastic deformations, the trimmed rotor pitch control angles and the blade structural loads of a small-scale model rotor in a blade vortex interaction (BVI) phenomenon.

Design/methodology/approach

The two different blade section property data sets for the first Higher-harmonic control Aeroacoustic Rotor Test (HART-I) are considered for the present rotor aeromechanics analyses. One is the blade property data set using the predicted values which is one of the estimated data sets used for the previous validation works. The other data set uses the measured values for an uninstrumented blade. A comprehensive rotorcraft analysis code, CAMRAD II (comprehensive analytical model of rotorcraft aerodynamics and dynamics II), is used to predict the rotor aeromechanics such as the blade natural frequencies, airloads, elastic deformations, the trimmed rotor pitch control angles and the blade structural loads for the three test cases with and without higher-harmonic control pitch inputs. In CAMRAD II modelling with the two different blade property data sets, the blade is represented as a geometrically nonlinear elastic beam, and the multiple-trailer wake with consolidation model is used to consider more elaborately the BVI effect in low-speed descending flight. The aeromechanics analysis result sets using the two different blade section property data sets are compared with each other as well as are correlated with the wind-tunnel test data.

Findings

The predicted blade natural frequencies using the two different blade section property data sets at non-rotating condition are quite similar to each other except for the natural frequency in the fourth flap mode. However, the natural frequencies using the predicted blade properties at nominal rotating condition are lower than those with the measured blade properties except for the second lead-lag frequency. The trimmed collective pitch control angle with the predicted blade properties is higher than both the wind-tunnel test data and the result using the measured blade properties in all the three test cases. The two different blade property data sets both give reasonable predictions on the blade section normal forces with BVI in the three test cases, and the two analysis results are reasonably similar to each other. The blade elastic deformations at the tip using the measured blade properties are correlated more closely with the wind-tunnel test data than those using the predicted blade properties in most correlation examples. In addition, the predictions of blade structural loads can be slightly or moderately improved by using the measured blade properties particularly for the oscillatory flap bending moments. Finally, the movement of the sectional centre of gravity location of the uninstrumented blade has a moderate influence on the blade elastic twist at the tip in the baseline case and the oscillatory flap bending moment in the minimum noise case.

Practical implications

The present comparison study on rotor aeromechanics analyses using the two different blade property data sets will show the influence of blade section properties on rotor aeromechanics analysis.

Originality/value

This paper is the first attempt to compare the aeromechanics analysis results using the two different blade section property data sets for all three test cases (baseline, minimum noise and minimum vibration) of HART-I in low-speed descending flight.

Keywords

Acknowledgements

This work was supported by research fund of Chungnam National University. The authors thank the HART-I team for the test data.

Citation

Park, J.-S. and Kee, Y.J. (2016), "Rotor aeromechanics study using two different blade property data sets", Aircraft Engineering and Aerospace Technology, Vol. 88 No. 6, pp. 873-884. https://doi.org/10.1108/AEAT-03-2015-0086

Publisher

:

Emerald Group Publishing Limited

Copyright © 2016, Emerald Group Publishing Limited

Related articles