To read the full version of this content please select one of the options below:

Local thermal non-equilibrium conjugate forced convection and entropy generation in an aircraft cabin with air channel partially filled porous insulation

Oktay Çiçek (Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul, Turkey)
A. Cihat Baytaş (Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul, Turkey)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 19 November 2021

Issue publication date: 7 January 2022

64

Abstract

Purpose

The purpose of this study is to numerically investigate heat transfer and entropy generation between airframe and cabin-cargo departments in an aircraft. The conjugate forced convection and entropy generation in a cylindrical cavity within air channel partly filled with porous insulation material as simplified geometry for airframe and cabin-cargo departments are considered under local thermal non-equilibrium condition.

Design/methodology/approach

The non-dimensional governing equations for fluid and porous media discretized by finite volume method are solved using the SIMPLE algorithm with pressure and velocity correction.

Findings

The effects of the following parameters on the problem are investigated; Reynolds number, Darcy number, the size of inlet and exit cross-section, thermal conductivity ratio for solid and fluid phases, angle between the vertical symmetry axis and the end of channel wall exit and the gap between adiabatic channel wall and horizontal adiabatic wall separating cabin and cargo sections.

Originality/value

This paper can provide a basic perspective and framework for thermal design between the fuselage and cabin-cargo sections. The minimum total entropy generation number is calculated for various Reynolds numbers and thermal conductivity ratios. It is observed that the channel wall temperature increases for high Reynolds number, low Darcy number, narrower exit cross-section and wider the gap between channel wall and horizontal.

Keywords

Citation

Çiçek, O. and Baytaş, A.C. (2022), "Local thermal non-equilibrium conjugate forced convection and entropy generation in an aircraft cabin with air channel partially filled porous insulation", Aircraft Engineering and Aerospace Technology, Vol. 94 No. 2, pp. 210-225. https://doi.org/10.1108/AEAT-02-2021-0039

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles