To read this content please select one of the options below:

The preliminary design of the air-intake system and the nacelle in the small aircraft-engine integration process

Wieńczysław Stalewski (Centre of New Technology, Aerodynamics Department, Instytut Lotnictwa (Institute of Aviation), Warsaw, Poland)
Jerzy Żółtak (Centre of New Technology, Aerodynamics Department, Instytut Lotnictwa (Institute of Aviation), Warsaw, Poland)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 29 April 2014

1137

Abstract

Purpose

The purpose of this paper is to present the results of the preliminary design and optimization of the air-intake system and the engine nacelle. The work was conducted as part of an integration process of a turboprop engine in a small aircraft in a tractor configuration.

Design/methodology/approach

The preliminary design process was performed using a parametric, interactive design approach. The parametric model of the aircraft was developed using the PARADES™ in-house software. The model assumed a high level of freedom concerning shaping all the components of aircraft important from the point of view of the engine integration. Additionally, the software was used to control the fulfillment of design constraints and to analyze selected geometrical properties. Based on the developed parametric model, the preliminary design was conducted using the interactive design and optimization methodology. Several concepts of the engine integration were investigated in the process. All components of the aircraft propulsion system were designed simultaneously to ensure their compliance with each other.

Findings

The concepts of the engine integration were modified according to changes in the design and technological constraints in the preliminary design process. For the most promising configurations, computational fluid dynamics (CFD) computations were conducted using commercial Reynolds-averaged Navier–Stokes solver FLUENT™ (ANSYS). The simulations tested the flow around the nacelle and inside the air-delivery system which consists of the air-intake duct, the foreign-particles separator and the auxiliary ducts delivering air to the cooling and air-conditioning systems. The effect of the working propeller was modeled using the Virtual Blade Model implemented in the FLUENT code. The flow inside the air-intake system was analyzed from the point of view of minimization of pressure losses in the air-intake duct, the quality of air stream delivered to the engine compressor and the effectiveness of the foreign particles separator.

Practical implications

Based on results of the CFD analyses, the final concept of the turboprop engine integration has been chosen.

Originality/value

The presented results of preliminary design process are valuable to achieve the final goal in the ongoing project.

Keywords

Acknowledgements

The research was supported by the FP7-AAT-2011-RTD01 Integrated Project ESPOSA (Efficient Systems and Propulsion for Small Aircraft), Contract No.: 284859

Citation

Stalewski, W. and Żółtak, J. (2014), "The preliminary design of the air-intake system and the nacelle in the small aircraft-engine integration process", Aircraft Engineering and Aerospace Technology, Vol. 86 No. 3, pp. 250-258. https://doi.org/10.1108/AEAT-01-2013-0015

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited

Related articles