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Abstract
Purpose – The aim of this study is to investigate the relationship between economic policy uncertainty
(EPU) and stock prices during the period fromMarch 2003 toMarch 2021.
Design/methodology/approach – The study uses asymmetric and symmetric frequency domain
causality tests and focuses on BRIC countries, namely, Brazil, Russia, India and China.
Findings – The findings of the symmetric causality test confirm unidirectional permanent causality
from EPU to stock prices for Brazil and India and bidirectional causality for China. However,
according to the asymmetric causality test, the findings for China show that there is no causality
between the variables. The results for Brazil and India indicate that there is unidirectional
permanent causality from positive components of EPU to positive components of stock prices.
Moreover, for Brazil, there is unidirectional temporary causality from the negative components of
EPU to the negative components of stock prices. For India, there is temporary causality in the
opposite direction.
Originality/value – The reactions of financial markets to positive and negative shocks differ. In this
context, to the best of the authors’ knowledge, this study is the first attempt to examine the causal
relationships between stock prices and uncertainty using an asymmetric frequency domain approach.
Thus, the study enables the analysis of the effects of positive and negative shocks in the stock market
separately.
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1. Introduction
Over the past 25 years, information and computer technologies have become increasingly
integrated into financial markets. However, technological developments have both
expanded stock markets and caused them to become more fragile and uncertain. In addition
to technological and financial developments, the economic policies of governments also play
an important role in this uncertainty and fragility. Uncertainty about governments’
economic policies can affect financial markets (Brogaard and Detzel, 2015). Policymakers
can contribute to economic policy uncertainty (EPU) through investment and consumption
spending, as well as regulatory, fiscal and monetary policies. Meanwhile, the political news
about what governments have done or might do dominate financial markets and affect asset
prices (Pastor and Veronesi, 2013).

According to some studies, business decision-makers cannot assess risks, opportunities
and tradeoffs of new technologies if they do not have certainty about government policies
(Marcus, 1981). Moreover, policy uncertainty causes fluctuations in investment and
employment (Bernanke, 1983). Rational investors either stop investing completely or in part
until uncertainty disappears. Therefore, uncertainty can negatively affect economic growth
and investment (Antonakakis et al., 2013). Uncertainty about government intervention can
also affect other macroeconomic indicators. Stock prices are directly related to
macroeconomic variables such as economic growth, employment, foreign direct investment
and foreign trade. For this reason, changes in EPU are likely to affect stock prices (Chang
et al., 2015). The increase in EPU also led to slow economic recoveries, unemployment and a
fall in the stock market (Li et al., 2016).

Stock prices, which reflect the future prospects and financial health of firms, are among
the most important indicators in portfolio investment decisions and capital budgeting
(Chang et al., 2015). As measures of the value of companies, stock prices are extremely
sensitive to changes in the markets. Just as the value of a company depends on current
economic conditions and projections, the value of publicly traded companies depends on
forecasts regarding domestic and global economic conditions. Similarly, stock price changes
are associated with current or projected economic conditions (Peiro, 2016).

Economic uncertainties can spread across countries for a variety of reasons. Sudden
fluctuations in output, employment, interest rates, oil prices and exchange rates indicate that
a country has an uncertain and unstable structure. Governments can contribute to the rise of
EPU through mismanagement and wrong decisions. Uncertainties due to elections also have
a significant impact onmarkets. Political uncertainty is greater when economic conditions are
poor (Ko and Lee, 2015). EPUs are expected to increase during economic and political crises.

Uncertainty is a central principle of finance. Many costly investment decisions are made
in an uncertain environment (Dixit, 1989). Investors who do not have perfect information
about macro-level variables and stock dividends often try to make intelligent predictions by
using available information (Ozoguz, 2009). Conditions in financial markets can change
within seconds. Therefore, investors closely follow news about the stock market.
Understanding the origins of stock market, volatility is important for policymakers and
market practitioners. The dividend discount model and arbitrage pricing theory suggest
that the effect of new or unexpected information on various macroeconomic variables will
result also impact stock prices by influencing expected dividends and discount rates. Since
future corporate earnings and hence cash flows depend on macroeconomic stability, it is not
surprising that uncertainty about the future behavior of macroeconomic fundamentals
triggers proportional responses by current stock returns (Chinzara, 2011). According to
basic financial theory, price decreases due to increased policy uncertainty stem from
negative expectations regarding future income flows and increases in discount rates
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(Brogaard and Detzel, 2015). Uncertainty about future government actions can affect market
prices in two ways. On the one hand, uncertainty can have a positive effect on prices if
governments respond appropriately to unexpected shocks, in which governments often
intervene, leading investors to believe that prices will be maintained. On the other hand,
discount rates may increase due to non-diversifiable risk, and in this case, EPU may
adversely affect asset prices (Pastor and Veronesi, 2013). From an economic perspective,
high uncertainty about policy changes leads to an increase in risk premia, which
discourages firms from making new investments and make credit more expensive for
households, thereby reducing stock prices (Badshah, 2019).

Based on the above discussion of the relationship between EPU and stock prices, we
investigate the causality between the two macroeconomic indicators in Brazil, Russia,
India and China (i.e. the BRIC countries). We chose the BRIC countries because they
receive a large share of global investment flows and are economically important.
According to the World Development Indicators (World Bank, 2019), the BRIC
countries accounted for 21% of global gross domestic product in 2018. At the same
time, these countries are home to 41% of the world’s population. Thus, BRIC countries
dominate other developing market economies.

Figure 1 shows the stock prices and EPUs in BRIC countries for the period of analysis.
The values on the left vertical axis are the stock prices and the values on the right vertical
axis are the EPU values. As can be seen in the figure, the 2008 financial crisis affected both
uncertainty and stock prices in these four countries. During the crisis, EPU reached
unprecedented levels and stock prices plummeted. Since the crisis, the stock market has

Figure 1.
Stock prices (SP) and
EPU in BRIC
countries (2003m3-
2021m3)
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recovered, and the EPU has declined. The highest EPU value for India was reached in 2012,
and the highest values for Russia and Brazil were reached in 2017. Since 2017, EPU has been
decreasing in Brazil and India, whereas it has been increasing in China. In China, the EPU
reached its highest value in 2019. High EPU could be the reason for low stock prices in
China. In the remaining countries, stock prices peaked in 2019.

Especially in financial markets, the reactions of individuals and firms to negative and
positive shocks can vary widely. Therefore, it is important to consider the effects of negative
and positive shocks in causal relationships between EPUs and stock prices. Most recent
studies in the literature are based on rolling-window or time-varying causality tests. These
tests neglect the effects of positive and negative shocks on the variables. Moreover, a limited
number of studies have examined the relationship between EPU and stock prices in the
BRIC countries. We aim to fill these two gaps in the literature by using a recently developed
asymmetric frequency domain test. With this test, we examined whether the asymmetric
causal relationship between EPU and stock prices is permanent or temporary. We believe
that our study will contribute to the current literature by providing strong policy
recommendations.

In Section 1, we present the relationship between stock prices and EPU and provide
information on EPU and stock prices in BRIC countries. The remainder of this paper is
structured as follows. Section 2 reviews the studies that empirically test the relationship
between the two variables. Section 3 describes the data set and model used in this paper.
Section 4 presents the empirical findings, and Section 5 provides a conclusion and summary
of the study.

2. Literature review
There are numerous studies in the literature that investigate the adverse effects of policy
uncertainty on investment (Rodrik, 1991; Gulen and Ion, 2015; and Bahmani-Oskooee and
Maki-Nayeri, 2019), employment (Julio and Yook, 2012) and economic growth (Bhagat et al.,
2013; Fern�andez-Villaverde, 2015). Similarly, EPU can affect stock prices. Although the
impact of EPU on various macroeconomic variables has been analyzed in many studies,
studies on the relationship between EPU and stock prices or stock returns emerged only
after the 2008 global financial crisis (Li et al., 2016). Baker et al. (2013, 2016) can be
considered as a turning point in the literature. The authors made an important contribution
by developing an EPU index, which has been used in many recent empirical studies. The
EPU index consists of the average of three main indicators of uncertainty: major news on
EPU, expiring tax provisions and forecasters’ disagreements about government purchases
and inflation. Recently, the effects of EPU on the stock market have attracted great interest
among investors, policymakers and academics (Jin et al., 2019).

Uncertainty in one country may affect stock prices in another country. Mensi et al. (2014)
investigate this possibility by performing quantile regressions for the BRICS countries (i.e.
the BRIC countries and South Africa) with data from September 1997 to September 2013;
they found that US EPU has no effect on the BRICS stock markets. Momin and Masih (2015)
investigated the impact of US EPU on the BRICS countries’ stock returns using an
autoregressive distributed lag model for the period January 2000 to March 2015. The
authors found that only the Indian stock market was affected by the US EPU. Dakhlaoui and
Aloui (2016) investigated the impact of EPU in the USA on the stock returns of the BRIC
countries using daily data from July 4, 1997, to July 27, 2011. They found that the
relationship between BRIC stock indices and EPU in the USA is negative, but the volatility
distribution varies between negative and positive values. Another result is that the
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correlation between uncertainty and stock returns is quite variable during global economic
crisis periods.

Domestic political uncertainty in a country can affect stock prices and returns in the
same country. Ozoguz (2009) used Markov switching and intertemporal capital asset pricing
models to examine the relationships between these variables in the USA from January 1961
to December 2001 and found a negative relationship between uncertainty and stock values.
Sum (2012) used ordinary least squares (OLS) method to investigate the data from February
1993 to April 2012 and concluded that EPU negatively affects stock market returns in the
European Union, Turkey, Ukraine, Switzerland, Russia and Norway. Antonakakis et al.
(2013) used a dynamic conditional correlation model for the USA from January 1985 to
January 2013 and found that S&P500 returns and EPU are negatively correlated.
Bijsterbosch and Guérin (2013) used a Markov regime-switching model for the US variables
from January 1986 to January 2012 and concluded that high EPU episodes decrease stock
prices and bond returns. Kang and Ratti (2013) used a vector autoregression (VAR) model
and found that a positive oil demand shock against US oil demand increased concerns about
future oil supply and triggered EPU, which reduced stock returns. They also determined
that EPU significantly affected stock returns in Europe and Canada. Brogaard and Detzel
(2015) used the generalized method of moments to test the relationship between stock
market returns and EPU in the USA. The authors used monthly data from May 1985 to
December 2012 and found a negative contemporaneous correlation between changes in EPU
and stock market returns. Chang et al. (2015) utilized a bootstrap panel causality test for
seven Organisation for Economic Co-operation and Development countries from January
2001 to April 2013 and concluded that stock price indices cause government policy
uncertainty in Italy and Spain, whereas government policy uncertainty causes stock price
uncertainty in the USA and the UK. They also argued that there is no causality between the
variables in Canada, Germany and France. Ko and Lee (2015) performed a wavelet analysis
for 11 countries in Asia, Europe and North America over the period from January 1998 to
December 2012 and found that stock prices decrease after an increase in EPU.

Arouri et al. (2016) used the Markov regime-switching regression for the USA from 1900
to 2014 and found that an increase in EPU negatively affects stock returns. Li et al. (2016)
used bootstrap full-sample and sub-sample rolling-window causality tests using data from
China for the period from February 1995 to February 2012 and India for the period from
February 2003 to February 2013. They found bidirectional causality in some sub-periods
and reported that there is a weak negative relationship between EPU and stock returns in
the two countries. Chen et al. (2017) used OLS and a VAR model to investigate Chinese data
over the period from January 1996 to 2013 and found that an increase in EPU lead to a
decrease in future stock market returns over different horizons. Christou et al. (2017) used a
panel VAR model for Australia, Canada, China, Japan, South Korea and the USA from
January 1998 to December 2014. The results revealed that increased policy uncertainty
negatively affects stock market returns. Demir and Ersan (2018) investigated the
relationship between EPU and stock returns of tourism companies listed on the Borsa
Istanbul. They used multiple regression approaches from January 2002 to December 2013
and revealed that the performance of the tourism sector is affected by uncertainty regarding
domestic and foreign economic policies. It was also determined that EPU had a negative
impact on the stock returns of Turkish tourism companies. Xiong et al. (2018) used the
dynamic conditional correlation-bivariate generalized autoregressive conditional
heteroskedasticity model from January 1995 to December 2016 and concluded that absolute
changes in EPU had a greater impact on Shanghai stock market returns than on Shenzhen
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stock market returns. The authors also found that fluctuations in stock returns are greater
during financial crises.

Guo et al. (2018) used quantitative regression to analyze the relationship between EPU
and stock returns in the group of seven (G7) and BRIC countries from February 1985 to
August 2015. The results for the ten countries revealed important details. According to the
results, EPU has an asymmetric relationship with the stock markets of the USA and Italy,
while EPU negatively affected the stock markets of Germany, Japan, India and China.
Moreover, the impact of uncertainty on the Canadian and Russian stock exchanges was
moderate, while there was no relationship between EPU and stock prices in the UK and
France. Chiang (2019) examined the relationships among EPU, risk and excess stock returns
in G7 countries over the period January 1997 to June 2016, using a generalized error
distribution GARCH model. The results showed that an increase in EPU reduces excess
stock returns. Gao et al. (2019) investigated the relationships among stock prices, EPU and
global oil prices in China for the period from January 2005 to December 2017. They used a
rolling window Toda-Yamamoto causality test and concluded that the bidirectional
causality between the variables was mainly associated with the 1997 Asian crisis, the 2008
financial crisis and China’s economic structural reform.

In contrast to previous studies, Jin et al. (2019) investigated the relationship between EPU
and stock price crash risk. They used OLS to estimate the relationship for China over the period
from January 2009 to December 2017 and concluded that EPU has a positive impact on crash
risk. As seen in the literature discussion, there are relationships between EPU and stock prices
and returns that vary by country. However, none of the studies in the literature have considered
the impact of positive and negative shocks on this relationship. More reliable results are
obtained by separating the effects of positive and negative situations in financial markets. In
this context, our study explains the causality relationships between the stock market and EPU
by distinguishing period and shock, thus contributing to the existing literature.

3. Methodology
In the empirical analysis part of this study, we use symmetric and asymmetric frequency–
domain causality tests to investigate the nexus between EPU and stock prices. The
frequency-based causality tests offer significant advantages over conventional tests. Time
domain causality tests can be run to determine the causal relationship between variables at
time zero (Breitung and Candelon, 2006). In other words, an analysis based on a conventional
time domain test can lead to ignoring the different frequency components of the series. This
type of information loss in series can cause deviating results. To overcome this problem,
frequency domain causality tests can be used to examine causality at different time points
considering different frequency components. Thus, using all the information in the series can
provide policymakers with more comprehensive insights into economic activities.

3.1 Symmetric frequency domain Granger causality
Breitung and Candelon (2006) proposed the frequency domain causality test based on
Geweke (1982) and Hosoya (1991). They used a bivariate finite-order VARmodel as follows:

Q11 Lð Þ Q12 Lð Þ
Q21 Lð Þ Q22 Lð Þ

� �
Xt

Yt

� �
¼ « 1t

« 2t

� �
(1)
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In equation (1), Q(L) is an autoregressive polynomial that is defined as 1�
Xp

i¼1
QiL

_I.
Breitung and Candelon used equation (2) to measure frequency causality as suggested by
Geweke (1982) and Hosoya (1991):

My!x vð Þ ¼ log
2p fx vð Þ

jW11 e�ivð Þj2
" #

¼ log 1þ jW12 e�ivð Þj2
jW11 e�ivð Þj2

" #
(2)

whereMy!x(v ) = 0 is the test of the null hypothesis that Y does not cause X. Breitung and
Candelon (2006) proposed the following VAR(p) model to investigate frequency causality:

Xt ¼
Xp
k¼1

u 11;kXt�k þ
Xp
k¼1

u 12;kYt�k þ « t (3)

TheMy!x(v ) = 0 linear restriction is used to test the null hypothesis of R(v )u 12 = 0 (Bahmani-
Oskooee et al., 2016), where u 12 and R(v ) are defined as [u 12,1,u 12,2,. . .u 12,p]’ and
cos vð Þcos 2vð Þ . . . . . . cos pvð Þ
sin vð Þsin 2vð Þ . . . . . . ::sin pvð Þ

� �
, respectively. For the Granger non-causality null

hypothesis at w frequency, one can use a chi-square distribution with two degrees of freedom.

3.2 Asymmetric frequency domain Granger causality
Conventional causality tests based on the symmetry assumption assume that the effects of
positive and negative shocks are not separated (Bahmani-Oskooee et al., 2016). In other
words, it is assumed that the effects of positive and negative shocks are the same. However,
investors, firms and traders show different reactions to these shocks. Apergis and Miller
(2006) argued that negative news in financial markets is an important factor that influences
consumption decisions. According to Hatemi-J (2019), market participants react more to
negative news in financial markets than to positive news. In addition, Wen et al. (2019)
stated that the main reason for the decline in stock prices, which is an important problem for
financial markets, is bad news. In this case, it is a very restrictive assumption to assume a
symmetric relationship that economic agents respond equally to negative and positive
shocks in financial markets (Hatemi-J, 2012).

Positive and negative shocks can have different effects in time series, and they may bias
the results of conventional tests. To overcome this issue, Hatemi-J (2012) obtained negative
and positive shocks as in equations (4) and (5):

yt ¼ yt�1 þ « 1t ¼ y10 þ
XT
i¼1

« 1i (4)

xt ¼ xt�1 þ « 2t ¼ x10 þ
XT
i¼1

« 2i (5)

With these equations, positive and negative shocks are defined as in equation (6):

«þ
1t
¼ max « 1t; 0ð Þ; «þ

2t
¼ max « 2t; 0ð Þ; «�

1t
¼ min « 1t; 0ð Þ; «�

2t
¼ min « 2t; 0ð Þ (6)
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We can rewrite equations (4) and (5) with restrictions « 1t ¼ «þ
1t
þ «�

1t
and « 2t ¼ «þ

2t
þ «�

2t
as

follows (Bahmani-Oskooee et al., 2016):

yt ¼ yt�1 þ « 1t ¼ y10 þ
Xt

i¼1

«þ
1i
þ
Xt

i¼1

«�
1i

(7)

xt ¼ xt�1 þ « 2t ¼ x10 þ
XT
i¼1

«þ
2i
þ
XT
i¼1

«�
2i

(8)

Hatemi-J (2012) assumes that the relationship between negative and positive shocks is similar at all
frequencies. However, Granger (1969) stated that the relationship between two variables might
differ at different frequencies. Therefore, Bahmani-Oskooee et al. (2016) transformed the Hatemi-J
(2012)’s asymmetric causality test from the time dimension to the frequency dimension. They
focused on two combinations, yþt ; x

þ
t

� �
and y�t ; x

�
tð Þ, for causal relationships and proposed the

followingmodel for the asymmetric causality test in the frequency domain:

Q11 Lð Þ Q12 Lð Þ
Q21 Lð Þ Q22 Lð Þ

� �
yþ
t

xþ
t

� �
¼ y 1t

y 2t

� �
(9)

where Q(L) denote an autoregressive polynomial that is defined as 1�
Xp

i¼1
QiL

_I. They used
equation (9) to measure asymmetric frequency causality as suggested by Geweke (1982) and
Hosoya (1991). In equation (10),Mxþt !yþt

vð Þ tests the null hypothesis that xþt does not cause yþt :

Mxþt !yþt
vð Þ ¼ log

2p fEX vð Þ
jW11 e�ivð Þj2

" #
¼ log 1þ jW12 e�ivð Þj2

jW11 e�ivð Þj2
" #

(10)

Furthermore, Bahmani-Oskooee et al. (2016) proposed the following VAR(p) model to test
frequency causality for positive components:

yþt ¼
Xp
k¼1

u 11;kyþt�k þ
Xp
k¼1

u 12;kxþt�k þˆ t (11)

The Mxþt !yþt
vð Þ linear restriction is used to test the null hypothesis of R(v )u 12 = 0

(Bahmani-Oskooee et al., 2016), where u 12 and R(v ) are defined as [u 12,1,u 12,2,. . .u 12,p]’ and
cos vð Þcos 2vð Þ . . . . . . cos pvð Þ
sin vð Þsin 2vð Þ . . . . . . ::sin pvð Þ

� �
, respectively. The null hypothesis is tested using aWald

statistic.
Hatemi-J (2012) noted that the analyzed series are not normally distributed because there may

be the autoregressive conditional heteroscedasticity (ARCH) effect in financial data. For this
reason, the Wald statistics may deviate from the asymptotic distribution. Therefore, Bahmani-
Oskooee et al. (2016) obtained critical values using the bootstrapping simulation technique.

4. Data and empirical results
We investigate the relationship between EPU and stock prices for the BRIC countries over
the period from March 2003 to March 2021. The EPU index and stock prices (SP) data were
obtained from Baker et al. (2013) [1] and Investing (2021), respectively. All variables used in
the study are transformed into logarithmic form.
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In the first part of the empirical analysis, we perform augmented Dickey–Fuller (Dickey
and Fuller, 1981) and Phillips–Perron (Phillips and Perron, 1988) unit root tests to determine
the degree of integration of the series. Table 1 shows the results of the unit root tests for each
country. According to the results, EPU is stationary at level I(0), while stock prices contain a
unit root for all countries except Brazil [2]. Stock prices are stationary at the first difference
I(1) in Brazil, China and Russia.

After determining the stationary properties of the series, we check multivariate
normality and ARCH effects for the symmetric and asymmetric causality tests [3]. Table 2
presents the results of the multivariate normality and multivariate ARCH effects tests for
symmetric causality. As can be seen in the table, the residuals do not follow a normal
distribution for all countries, and ARCH effects are present for Brazil and China.

Table 3 provides the results of the multivariate normality and multivariate ARCH tests
for asymmetric causality. The results show that residuals of the negative and positive
components do not follow a normal distribution for all countries. Moreover, ARCH effects
are present in both components for Brazil and China.

Table 1.
Results of the unit
root tests

ADF PP

Countries Variables
Test stat.

I(0)
Test stat.

I(1) p I(0)/I(1)
Test stat.

I(0)
Test stat.

I(1)
Bandwidth
I(0)/I(1)

Brazil EPU �3.503* – 3 �8.202* – 8
SP �1.774 �6.192* 9/8 �2.891** – 0

China EPU �1.565 �18.980* 2/1 �3.464* – 6
SP �1.724 �12.909* 0/0 �2.239 �13.352* 8/7

India EPU �3.067** – 2 �6.171* – 6
SP �2.479 �13.689* 0/0 �2.406 �13.772* 6/6

Russia EPU �3.325** – 2 �7.736* – 8
SP �2.084 �11.637* 1/0 �2.389 �11.712* 5/4

Table 2.
Normality and ARCH
effects for symmetric
causality

Countries Multivariate ARCH Multivariate Normality

Brazil 0.285 0.000*

China 0.121 0.011**

India 0.018** 0.000*

Russia 0.000* 0.000*

Note: *and **denote the significance of the test statistic at 1% and 5% levels, respectively

Table 3.
Normality and ARCH
effects for
asymmetric causality

The positive components The negative components

Countries
Multivariate

ARCH Multivariate Normality
Multivariate

ARCH Multivariate Normality

Brazil 0.796 0.000* 0.315 0.000*

China 0.155 0.000* 0.577 0.000*

India 0.016** 0.000* 0.163 0.000*

Russia 0.001* 0.000* 0.000* 0.000*

Notes: The null of the normality test is residuals follow a normal distribution. The null of the ARCH test is
ARCH effects present. *denotes the significance of the test statistic at 1% level
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Financial series do not generally follow a normal distribution. We find that the residuals in
both symmetric and asymmetric causality tests are not normally distributed and exhibit
ARCH effects. In this case, standard time series approaches based on normality and
constant variance may not provide accurate results (Hatemi-J, 2012). Therefore, we use the
bootstrap method to avoid these problems.

The results of the symmetric causality tests causality tests in the frequency domain are shown
in Table 4. The frequency lengths for the long and short periods are 0.5 and 2.5, respectively. In
other words, 0.5 indicates permanent causality, whereas 2.5 represents a temporary causal
relationship. The long term refers to periods longer than 1year ([2� 3.14/0.5]), whereas the short
term refers to periods of about 3months ([2� 3.14]/2.5). According to the symmetric causality
results, there is unidirectional permanent causality from EPU to stock prices for Brazil, China and
India. For China, there is also unidirectional temporary causality from stock prices to EPU.

Table 5 shows the results of the asymmetric frequency domain causality test for the
positive components. The results indicate that there is unidirectional permanent causality
from the positive components of EPU to the positive components of stock prices for Brazil.
For India, there are permanent and temporary causality relations in the same direction.

Table 6 presents the asymmetric frequency domain causality test results for the negative
components. For Brazil, there is unidirectional temporary causality from the negative

Table 4.
The results of

symmetric frequency
domain causality test

H0: EPU does not cause SP
Countries w = 0.5 1% 5% 10% w = 2.5 1% 5% 10%

Brazil 14.549* 9.499 6.089 4.698 5.485 8.706 5.776 4.455
China 5.272*** 8.768 5.635 4.097 0.827 8.050 5.695 4.353
India 6.800** 8.828 6.147 4.793 2.833 8.853 5.545 4.467
Russia 2.269 10.711 6.221 4.544 0.352 8.730 5.861 4.424
H0: SP do not cause EPU
Brazil 4.432 9.160 5.762 4.460 1.336 9.883 5.831 4.615
China 3.096 9.251 5.929 4.612 4.654 *** 8.782 5.967 4.567
India 1.238 8.815 6.110 4.623 2.375 9.942 6.001 4.600
Russia 0.884 8.890 6.029 4.593 0.472 9.250 5.551 4.491

Notes: w denotes the frequency length. *, **, and ***denote the significance of the test statistic 1%, 5%, and
10% levels, respectively

Table 5.
The results of
asymmetric

frequency domain
causality test for

positive components

Countries w = 0.5 1% 5% 10% w = 2.5 1% 5% 10%

H0: positive components of EPU do not cause positive components of SP
Brazil 9.194** 9.724 6.153 4.305 4.708 10.409 7.032 5.165
China 0.767 9.571 6.088 4.707 1.077 9.356 5.837 4.350
India 8.219** 8.578 5.903 4.556 4.588*** 9.693 6.086 4.479
Russia 0.862 9.046 6.174 5.571 1.344 8.912 5.895 4.305

H0: positive components of SP do not cause positive components of EPU
Brazil 0.030 8.767 5.406 4.402 1.242 9.342 6.377 4.912
China 0.456 9.601 5.805 4.352 2.448 9.452 5.923 4.443
India 0.835 9.228 6.161 4.758 0.201 9.547 6.026 4.640
Russia 2.901 9.472 5.999 4.438 0.752 9.307 5.641 4.600

Notes: w denotes the frequency length. **and ***denote the significance of the test statistic level at 5% and
10%, respectively
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components of EPU to the negative components of stock prices. For India, there is a
temporary causality in the opposite direction.

The symmetric and asymmetric frequency domain causality graphical test results for all
frequencies are shown in Figures A1 to A3 (Appendix). In the figures, the Wald statistics are
represented by a solid line, and there is a causal relationship between the frequencies with a solid
line above the dashed lines. As can be seen in detail in the figures, symmetrical and asymmetrical
causality findings are different for China. Asymmetric causality findings show that there is no
relationship between stock prices andEPU in China. In this case, the volatility in the Chinese stock
market may be due to different macroeconomic indicators such as economic growth, exchange
rate, foreign trade, financial development and energy consumption. The overall results of the
study show that there is a strong relationship betweenEPU and stock prices for India andBrazil.

5. Conclusions
This study examined the relationship between EPU and stock prices for BRIC countries
during the period from March 2003 to September 2019 using symmetric and asymmetric
frequency domain causality tests. The main contribution of this study was the separate
consideration of positive and negative shocks in examining the asymmetric causal
relationship between EPU and stock prices.

Using a symmetric causality test, we found permanent bidirectional causality between
EPU and stock prices for China. There is also unidirectional causality from EPU to stock
prices for Brazil and India. Li et al. (2016), Christou (2017) and Guo et al. (2018) determined
that Chinese EPU reduces stock prices and returns. We have also determined that Chinese
stock prices affect EPU. However, the results of the asymmetric causality test show that
there is no causality between variables for China. For this reason, the findings of our study
do not coincide with previous studies. Chinese EPU has increased in recent years (shown in
Figure 1). Stock prices have remained at the level of the 2009 financial crisis. In order to
revive the stock market, the Chinese Government should focus on other macroeconomic
indicators besides the EPU.

According to the asymmetric causality results, positive EPU shocks positively affected stock
prices in Brazil. Moreover, unidirectional causality from EPU to stock prices is found in this
country for negative shocks. The removal of economic uncertainty in Brazil stimulates
investment, which has a positive effect on the stockmarket. The negative shocks in EPUpostpone
investment decisions, undermine confidence in the stockmarket and thus reduce stock prices.

Table 6.
The results of
asymmetric frequency
domain causality for
negative components

Countries w = 0.5 1% 5% 10% w = 2.5 1% 5% 10%

H0: negative components of EPU do not cause negative components of SP
Brazil 3.334 8.854 5.440 4.217 4.973*** 8.575 5.442 4.165
China 0.488 8.477 5.853 4.403 1.646 9.189 5.896 4.402
India 1.818 8.891 5.934 4.586 0.408 10.070 5.901 4.467
Russia 1.769 9.435 6.287 4.714 0.973 9.415 6.128 4.742

H0: negative components of SP do not cause negative components of EPU
Brazil 2.138 9.328 6.044 4.452 3.241 10.322 5.665 4.170
China 0.638 11.155 6.240 4.788 1.556 9.991 6.221 4.575
India 2.349 10.001 5.993 4.548 8.087** 9.210 5.404 4.243
Russia 2.239 10.861 5.980 4.390 0.582 9.244 5.816 4.397

Notes: w denotes the frequency length. **and ***denote the significance of the test statistic at 5% and 10%
levels, respectively
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For India, we found unidirectional permanent and temporary causality from positive
EPU shocks to positive stock price shocks. This result is in line with the findings of Li et al.
(2016) and Guo et al. (2018). As India’s EPU has declined, fluctuations in employment and
investment have also decreased, and the Indian stock market has been supported by
increasing investment. Moreover, unidirectional causality from stock prices to EPU is found
for negative shocks in India. In this case, negative stock price shocks in India increased EPU
by reducing the value of firms and household wealth. Stock price fluctuations caused by
positive and negative shocks lead to policy changes. A rapid outflow of money from the
stock market leads to an increase in the exchange rate and the debt burden. According to our
findings, this is the case for India. During the global crisis of 2008, the National Stock
Exchange of India suffered a major shock, and at the same time, the Indian rupee
depreciated significantly. To overcome this problem, the Indian Government implemented
expansionary policies such as credit expansion and tax cuts.

Although Sum (2012) argued that EPU negatively affects stock prices in Russia, our
results from symmetric and asymmetric causality tests show that there is no relationship
between the two variables for this country. In Russia, stock prices have increased since 2014.
Although the EPU reached its highest value in 2017, the Russian stock market continues to
rise. However, Russia still has a high level of economic uncertainty.

The overall results show that economic policies of governments have a causal relationship
with stock prices in Brazil and India. Effective and strong economic policies implemented by
governments in these countries support the performance of their stock markets. However,
uncertainty about economic policies has a detrimental effect on stock markets.

Finally, this study offers some research opportunities. The effects of EPU on the prices of
other assets in BRIC countries, such as oil and gold, should be examined. In addition, future
research should investigate the asymmetric causal relationship between EPU and stock
prices in developed country groups such as the G7. Furthermore, the impact of positive or
negative EPU shocks in the USA on the stock markets in other countries can be analyzed
using the asymmetric frequency domain causality test.

Notes

1. www.policyuncertainty.com/

2. The unit root test results for the positive and negative shocks available upon request from the authors.

3. We use Hacker and Hatemi-J (2005) and Doornik and Hansen (2008) tests to check multivariate
ARCH and multivariate normality, respectively.
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Appendix

FigureA1.
Symmetric frequency
domain causality test
resultsA: SP do not
cause EPU B: EPU
does not cause SP
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FigureA2.
Asymmetric
frequency domain
causality test results
for positive
componentsA: SPþ

do not cause EPUþ B:
EPUþ does not cause
SPþ
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FigureA3.
Asymmetric

frequency domain
causality test results

for negative
componentsA: SP –

do not cause EPU – B:
EPU – does not cause

SP –
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