Books and journals Case studies Expert Briefings Open Access
Advanced search

A Mannich base 1-phenyl-3-(1-pyrrolidinyl)-1-propanone: synthesis and performance study on corrosion inhibition for N80 steel in 15% hydrochloric acid

Yuan Pan (College of Science, China University of Petroleum, Qingdao, China.)
Fengtao Zhan (College of Science, China University of Petroleum, Qingdao, China.)
Zhifeng Lu (College of Science, China University of Petroleum, Qingdao, China.)
Yan Lin (College of Science, China University of Petroleum, Qingdao, China.)
Zhen Yang (College of Science, China University of Petroleum, Qingdao, China.)
Zheng Wang (College of Science, China University of Petroleum, Qingdao, China.)

Anti-Corrosion Methods and Materials

ISSN: 0003-5599

Publication date: 7 March 2016

Abstract

Purpose

The purpose of this paper is to set out a study of a Mannich base, which was synthesized and used as an acidizing corrosion inhibitor first, and to the corrosion inhibitor mechanism.

Design/methodology/approach

A Mannich base, 1-phenyl-3-(1-pyrrolidinyl)-propanone (PHPP), was synthesized with acetophenone, pyrrolidine and formaldehyde at pH = approximately 2-3. The structure of PHPP was characterized by elemental analysis and Fourier transform infrared spectroscopy (FTIR). The corrosion inhibition of PHPP on N80 steel in 15 per cent hydrochloric acid (HCl) was studied by weight loss method, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX), and the adsorption behavior of PHPP on the surface of N80 steel was discussed.

Findings

The results showed that the inhibition efficiency reached to 99.8 per cent and corrosion rate was 2.65 g·m-2·h-1 at 0.6 per cent of PHPP concentration in 15 per cent HCl, which indicated that PHPP presented excellent corrosion inhibition performance. The results of SEM and EDAX analysis showed that PHPP could be absorbed on the surface of N80 steel. The adsorption process of PHPP on the surface of N80 steel was chemisorption. This process was spontaneous and obeyed Langmuir adsorption isotherm.

Originality/value

It was found that PHPP presented excellent corrosion inhibition performance, and it is practicable to enhance oil production in oilfield development as a oil-well acidizing inhibitor. The study results can provide theoretical guidelines for the development of the inhibitor.

Keywords

  • Corrosion
  • Inhibitors
  • High temperature
  • Mechanisms
  • Erosion and wear

Citation

Pan, Y., Zhan, F., Lu, Z., Lin, Y., Yang, Z. and Wang, Z. (2016), "A Mannich base 1-phenyl-3-(1-pyrrolidinyl)-1-propanone: synthesis and performance study on corrosion inhibition for N80 steel in 15% hydrochloric acid", Anti-Corrosion Methods and Materials, Vol. 63 No. 2, pp. 153-159. https://doi.org/10.1108/ACMM-08-2013-1298

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2016, Emerald Group Publishing Limited

Please note you do not have access to teaching notes

You may be able to access teaching notes by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
If you think you should have access to this content, click the button to contact our support team.
Contact us

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you think you should have access to this content, click the button to contact our support team.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here