Hand gesture recognition using low-budget data glove and cluster-trained probabilistic neural network

Ognjan Luzanin (Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia)
Miroslav Plancak (Department of Manufacturing Engineering, Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia)

Assembly Automation

ISSN: 0144-5154

Publication date: 28 January 2014

Abstract

Purpose

Main purpose is to present methodology which allows efficient hand gesture recognition using low-budget, 5-sensor data glove. To allow widespread use of low-budget data gloves in engineering virtual reality (VR) applications, gesture dictionaries must be enhanced with more ergonomic and symbolically meaningful hand gestures, while providing high gesture recognition rates when used by different seen and unseen users.

Design/methodology/approach

The simple boundary-value gesture recognition methodology was replaced by a probabilistic neural network (PNN)-based gesture recognition system able to process simple and complex static gestures. In order to overcome problems inherent to PNN – primarily, slow execution with large training data sets – the proposed gesture recognition system uses clustering ensemble to reduce the training data set without significant deterioration of the quality of training. The reduction of training data set is efficiently performed using three types of clustering algorithms, yielding small number of input vectors that represent the original population very well.

Findings

The proposed methodology is capable of providing efficient recognition of simple and complex static gestures and was also successfully tested with gestures of an unseen user, i.e. person who took no part in the training phase.

Practical implications

The hand gesture recognition system based on the proposed methodology enables the use of affordable data gloves with a small number of sensors in VR engineering applications which require complex static gestures, including assembly and maintenance simulations.

Originality/value

According to literature, there are no similar solutions that allow efficient recognition of simple and complex static hand gestures, based on a 5-sensor data glove.

Keywords

Citation

Luzanin, O. and Plancak, M. (2014), "Hand gesture recognition using low-budget data glove and cluster-trained probabilistic neural network", Assembly Automation, Vol. 34 No. 1, pp. 94-105. https://doi.org/10.1108/AA-03-2013-020

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.