Business models (BMs), 90 (see also Circular business models (CBMs)) as focal point of circularity on company level, 91–93
Business(es), 153, 201 ecosystems, 90 strategies, 284 value and impact, 285, 299 Butterfly diagram, 73–74 By-product synergies, 33

Circular Economy Action Plan, 177
Circular Innovation in Partnerships (CIP), 275
Circular public procurement (CPP), 331–332
criteria, 338
practices, 337–338
Circular Services in the Electric and
Electronic Sector project (C-SERVEES project), 38
Circular supply chain (CSC), 56, 71, 133, 215–220
models for “closed-loop” end of, 220–227
models for “open-loop” end of CSCs, 227–230
sustainable supply chain analytics toward CSC models, 230–231
Circular supply chain management (CSCM), 217
Circular supply systems, 50
from adaptation to emergence, 52–53
information, 61
information flows for circular production, 53–58
information needed for supply chain adaptation, 52
new actor roles and networks, 58–60
new spatial and temporal patterns, 60–61
new system configurations, 51–53
potential emergence in, 58–61
supply chains as CAS, 51–52
Circular systems, 4
Circular tourism, 315
examples of activities in network, 320–323
methodology, 317–318
results, 318–320
roles of different actors in network, 323–324
Circular. fashion, 352
Circularity for global commodities, 292–296
Circulytics, 197
Closed cycles, 194
Closed-loop supply chains (CLSCs), 111–112, 216, 220
competitive recycling and manufacturing locations in very low-cost and CO₂e CLSCs, 121–124
decision levels, 223
effects of recycling locations on CO₂e and cost of reverse logistics and recycling activities, 116
emissions factors of heating energy and water freight analysis, 118–120
mathematical programming, 224–225
MMM, 226–227
MSA, 225
price of used garment and percent of gross profit at recycling facilities analysis, 118
research design and data inputs for simulations, 113–116
scenario and sensitivity analyses of important factors, 116–120
SDM, 222–224
Closed-loop system, 130
Closing loops, 155–158
Cloud systems, 190
Cluster analysis results, 259
Co-opetition, 316
Coffee cups, 75–77
Coffee grounds, 306
Coffee in Cone from South Africa, 77
Collaboration, 90, 94, 316
College textbooks, 170
Complex adaptive systems (CAS), 50, 70
supply chains as, 51–52
Conditional action, 52
Conference Proceedings Citation Index-Science (CPCI-S), 219
Conference Proceedings Citation
Index-Social Science & Humanities (CPCI-SSH), 219
Consumers, 4, 133, 151–152, 159
behavior, 155, 157
purchase decisions, 161
Consumption, 69
Contracts, 42
Cooperative strategic posture, 130–131
Coordination, 43
COPPEAD Graduate School of Business, 358, 363
Corporate social responsibility (CSR), 333–334
Corruption perceptions index (CPI), 259
Cost, 112, 116
structure, 93
Costa Coffee, 76
Cotton, 360
Cotton-polyester blends, 55
COVID-19 pandemic, 74, 160
“Cradle-to-cradle” model, 4
Craft brewery, 35
Critical success factor theory, 207
Cross tabulation, 113
Cross-industry flows, 5
Crowdsourcing, 159
Cryptocurrency, 190
tokens of blockchain, 203
CupClub, 76
Customer relationships, 93
CVS, 175
Cyber-physical systems, 190
Daimler, 84
Danish Agricultural Agency, 278
Danish Environmental Protection Agency, 277
Danish Insect Network (DIN), 278
Danish Veterinary and Food Administration, 277
Data envelopment analysis (DEA), 241, 245–247
results, 249–258
Dave, 157
Decision-making trial and evaluation laboratory (DEMATEL), 203
Decision-making unit (DMU), 245, 247
Decomposers, 4, 53, 55, 112, 131, 133, 142, 144, 241, 316, 321, 323, 325, 344, 351
Decomposition, 69
Decoupling of sustainability practices, 362–363
Dematerializing loops, 160–161
Demeter Project, 143
Design for Decomposability (DFD), 142–143
Design for manufacturability, 144
Design for Scavengers (DFS), 143
Design science, 205–206
Designers of new circular fiber technologies, 349–351
Destination approach, 315, 317
networks, 314
Digitalization, 161, 190
Disassembly processing, 196
Dollar General, 176
Dollar stores, 170–171, 175
Dollar Tree, 176
Downcycling, 36
Dynamic capabilities (DCs), 284, 288, 291–292, 295
E-commerce, 173, 179
increased product returns due to E-commerce growth, 173–174
Eastern Europe (EE), 258
eBay powersellers, 170–171
eBooks, 161
Eco-design of products, 39
Eco-efficiency, 288
Eco-FlowTM model, 228–229
Eco-industrial parks (EIPs), 31–32, 193–194
Eco-Management and Audit Scheme (EMAS certification), 334
Economic input–output life cycle assessment model (EIO-LCA model), 225
Economic sustainability performance, blockchain for, 197–201
Economic trends, 153
ECONYL® fiber, 348–350
Ecosystem value, 285
and impact, 299–300
Ecosystems, 289, 344–345
EE multiregional IO systems (EE-MRIO), 227
Electric arc furnace, 143
Electric vehicle sales (EV sales), 39–40
Electronics, 38, 42
Ellen MacArthur Foundation (EMF), 78, 286
Emergence, 52–53
Emerging Sources Citation Index (ESCI), 219
Emergy analysis, 204
Emission factors (EFs), 114
Employment rate, 242
End of use (EoU), 220
End-user, 152
- economic, social, and ecological trends motivating consumer focus, 152–155
- integrating consumers into circular SCM processes, 155–161
Environmental imperatives, 216
Environmental Protection Act, 277
Environmental sustainability performance, blockchain for, 203–204
Environmental uncertainty, 206
Enviropap, 293
European Circular Economy Stakeholder Platform, 133
European Green Deal, 177
European Union (EU), 38, 76, 133, 240, 273, 313, 330
Circular Economy Action Plan, 78
Excess inventory, 168–170
Excess Inventory Appraiser license, 177
EXIOBASE3, 227
Exploratory data analysis, 113
Extended producer responsibility (EPR), 39
Extended supply systems, 56–57
Facilitators of CE networks, 351–352
Factory outlet stores, 181
Fairphone, 39
Financing, 304–305
Finlayson (Finnish home textile company), 54, 60
Firm value, 284–285
and impact, 296
Firms, 44, 183, 284
scope, 121
Fixed capital formation (FCF), 244
Food, 34–36
- waste, 289
- webs, 32
Forward-leaning strategies, 157
Frass, 273–277
Garment Collection Program, 157
Gas emissions, 242
Generalized efficiency measures (GEM), 243
Germany’s Closed Substance Cycle, 177
Global satellite positioning, 190
Global supply chains, 38–40
Global supply networks, 70
Globe Hope, 346
Google’s “Project Ara”, 158
Government legislation, 39
Green public procurement (GPP), 330–333
Green supply chain (GSC), 216
Greenhouse gas emissions (GHG emissions), 113, 224, 314
Greeting cards, 168
Grey Relational Analysis, 244
Grinding, 196
Gross domestic product (GDP), 74, 169, 242, 314, 330
Gross fixed capital (GFC), 244
Grounded theory approach, 90, 95
Guiyu industrial park in China, 42
Guiyu National Circular Economy
Industrial Park in China, 39
H&M, 157
HallaxHalla, 348–349
“Hub and spoke” model, 40
Hydro-Quebec (HQ), 305
IKEA, 157
Incentivization, 190
Incumbents, 84
India’s Mysore District, 37
Industrial ecology, 30
Industrial ecosystems, 32, 39
Industrial symbiosis (IS), 30, 218
biological inspiration and
historical context, 32
comparing supply network
contexts, 40–43
in different supply network
contexts, 34–40
within local to global supply
networks, 44–45
networks, 33
as novel supply networks for CE,
32–34
pathways to implementation,
43–44
scholarship and practice, 31
Industrial systems, 284
Infinited Fiber Company, 351
Informal networks, 314
Information flows, 50, 52
for circular production, 53–58
Information sharing, 191
Input–output model (IO model), 227, 229
Insects, 272
breeding, 274–275
farming, 272
frass, 273–274
Insurance policy, 305
Integrated Food-Energy Systems, 34
Integration, 43
Intensifying loops, 159
International Platform of Insects for
Food and Feed (IPIFF), 273
International secondary markets,
176–179
Internet of Things (IoT), 190, 192
Intricate production networks, 75
Ioncell®, 350–351
Jointness of interests, 130
Karo Sambhav–Microsoft
partnership, 39
Key activities, 92
Key partnerships, 92
Key performance indicators (KPI),
223
Key resources, 92
Kioto Protocol, 359
Knowledge hub, 287
Landed scope, 121
Landscape systems, 190
Life cycle costing, 330
Linear “take-make-dispose” economy
(LE), 215–216
Linear approach, 284
Linear programming, 203
Linear to circular supply chains
manufacturers in changing global
economic system, 69–71
new combinations of resources,
77–84
problems with linear supply chains,
74–77
transition to circular economy,
71–74
Local manufacturers, 54
Local recyclers in Guiyu, 42–43
Local supply networks, 53–55
Localized supply chains, 34–36
Location decisions, 112
Logistical processes, 204
Loi Coluche, 289
Loi Garot, 289
Low-cost forward SCs, 112
Index

Macy, 179, 181
Manufacturers, 351
 in changing global economic system, 69–71
Manure, 273, 276
Market engagement process, 330, 337
Material passports, 55
Material shortages, 56
Mathematical programming (MP), 224–225
Membrane Electrode Assemblies (MEAs), 83
Middle out approach, 33
Mini mill, 143
Mixed industrial parks and cities, 36–37
Mixed integer linear programming (MILP), 224
Mixed-integer programming (MIP), 228
Mobilize, 84
Most economically advantageous tender (MEAT), 330
Mulberry fish pond, 30
Multi-agent system, 193
Multi-method modeling (MMM), 226–227
Multi-objective MILP model, 225
Multi-objective optimization model, 228
Multi-scale analysis (MSA), 225
Municipalities, 277
Mycorrhiza, 29
N-methylmorpholine-N-oxide (NMMO), 114
Nanjangud Industrial Area (NIA), 37
Narrowing loops, 159–160
National food waste initiative, 289–292
National Industrial Symbiosis Programme (NISP), 34
Natural ecosystems, 90
Natural resource-based view, 206
Network, 304, 314
 approach, 101
governance, 94
network-level case study, 317
value capture, 94
value creation, 94
value exchange, 94
Neurospora crisis, 307–308
New circular fiber technologies, designers of, 349–351
New Luxury, 359
Nike, 171
Nitrogen oxide emissions (NO emissions), 243
NOENAEUL®, 348–349
Non-product outputs, 32
Nongovernmental organization (NGO), 76–77, 288, 317, 346, 362
Nonhazardous industrial waste (NHIW), 30
Nordstrom, 179, 181
Nordstrom Rack platform, 181
Obsolete systems, 195
Omnichannel development, 183
Open business models (OBMs), 90, 93–94
 discussion and framework to design OBMs for circular economy, 98–103
Open innovation, 93–94
Organic matter, 32
Organisation for Economic Co-operation and Development (OECD), 243
Organization information processing theory (OIPT), 206–207
Organizational life cycle, 142–144
Original equipment manufacturers (OEMs), 84, 195
Osklen, 358
 biomimetic perspective, 364
 Brazilian way, 358–359
 challenge of overcoming decoupling of sustainability practices, 362–363
 realm of circular economy, 360–362
scavengers, 363–364
sustainable development, 359–360
Outlets, 175
malls, 178

Packaging, 161
Panarchy theory, 71, 73
Panel regression, 242
analysis, 248
results, 258–259
Paris Fashion Week, 358
Particulate matter emissions
(PM emissions), 244
Partnership, 317
Patagonia, 181–182
Payless Shoes, 174
Performance measurement, 190–191
Phenix case, 289
challenges and stumbling blocks,
291
dynamic capabilities, 291–292
evolution path, 289–290
network building, 290–291
systemic impacts, 292
Phenix Lab, 291
Planetary boundaries, 57
Plant in Chicago, IL, USA, 34–35
Plastic waste, 96
Plastics industry
empirical study in, 94
industry setting, 96–97
research approach, 94–96
sample and data analysis, 97
Plastics recycling industry, 40
Platform for Accelerating the Circular
Economy (PACE), 78
POGI, 338
Point-of-sale bottle return programs,
55
Polyethylene terephthalate bottles
(PET bottles), 347
Polylactic acid (PLA), 294
Post-consumer flows, 57
Post-consumer waste, 54, 56
Price of oil, 40
Primary manufacturers, 69–70
Producers, 4, 55, 69, 90, 133
Product returns, 168, 170
Product systems, 42
Production, 69
Programme for International Student
Assessment (PISA), 245
Public procurement (PP), 330
case introduction, 333–334
challenges, 338–339
CPP practices, 337–338
green public procurement and CE,
330–333
sustainable procurement of
workwear and laundry
services, 334–337
Pulp and paper clusters, 36
Pure Waste, 347–348
Quadruple bottom line (QBL), 216
Quality control (QC), 195
Quantitative models, 181
Quick Response codes (QR codes), 39
Radio-frequency identification
(RFID), 190, 192
chips, 334
scanning, 55
tracking technology, 77
ReBlender, 348
RECUP, 77
Recycled cotton, 360
Recycled materials, users of, 347–349
Recycling, 243, 249
locations, 112
recycling-oriented society, 177
“Reduce, reuse, and recycle”, 167, 177
REFIBRA™, 350
Regeneration, 315
Regression analysis, 225
Regulations, 56
Regulatory barriers, 275
Rejection of narrowly economic views
of firms, 130–131
Remanufacturing locations, 112
Remember, 73
Renewable energy, 194
Research and development (R&D), 242
Resource conservation manufacturing model (ResCoM model), 222–223
Resource constraints, 33
Resource productivity, 242
Retail apocalypse, 174
Retail formats, 173–179
Retailers, 195, 351
Reusable systems and products, 195
Reusers of waste material, 345–347
Revenue streams, 93
Reverse logistics (RL), 113, 217
processes, 157, 194–196
supply chains, 203
Reverse-recycling SC cost (R-R SC cost), 113–114, 116, 124
Revolt, 73
“Right to repair” rule, 158
Risks, 40–41
Riversimple, 83–84
Robust ranking, 259
Ross, 181
Rotary Club in Kalundborg, Denmark, 41
Salvage dealers, 170, 172
SBMs, 91
Scarcity, 50
Science Citation Index Expanded (SCI-EXPANDED), 40–41
Secondary manufacturers, 69–70
Secondary markets, 168–169
best practices, 181–182
channels, 170–172, 178
effective secondary market strategies, 179–181
research opportunities related to circular economy, 183–184
and retail formats, 173–179
size of US secondary market, 172–173
Security, 190–191
Semi-formal networks, 314
Servitization strategies, 160–161
Sharing economy, 315
Shredding, 196
Slowing loops, 158–159
Small-and medium-sized enterprises (SMEs), 286
Small-scale industrial symbiosis, 303
Smart contracts, 191–192, 203
Smart execution, 190, 203
Social mobility, 153
Social Sciences Citation Index (SSCI), 219
Social sustainability performance, blockchain for, 201–203
Social–ecological system, 70
Societal value, 285
and impact, 299
South West case (SW case), 286
challenges and stumbling blocks, 288
dynamic capabilities, 288
evolution path, 286–287
network building, 287
systemic impacts, 289
Sport utility vehicles (SUVs), 82
Sports Authority, 174
Stakeholders, 152
potential optimization models for harmonizing, 144–145
relationships, 142–144
theory, 129–133
Starbucks, 76
Streaming video, 161
Super-efficiency models, 247
Supply chain (SC), 30–31, 70, 111–112, 190, 216, 243 (see also Circular supply chain (CSC))
as CAS, 51–52
disruptions, 42
information needed for supply chain adaptation, 52
literature, 5
in regional contexts, 36–37
risks, 130
traceability, 192
traditional view, 154
Supply chain management (SCM), 32, 152, 191, 216
Supply network, 50–51, 361–362
contexts, 40
distribution of benefits, 41–43
uncertainties and risks, 40–41
Supply systems, 51–52
Supply uncertainty, 40
Supply-use tables (SUTs), 227
Sustainability, 143, 158, 190–191, 216
Sustainable development (SD), 240, 359–360
empirical analysis, 248–259
literature overview, 242–245
methodology description, 245–248
Sustainable development goals (SDGs), 240
Sustainable fashion, 358, 360
Sustainable procurement of workwear and laundry services, 334–337
Sustainable supply chain (SSC), 217
Sustainable supply chain analytics (SSCA), 231
toward CSC models, 230–231
Swedish Stockings, 349
Symbiotic supply chain, 31
Synergies, 43
System change, 77
System dynamics (SD), 203
System dynamics modeling (SDM), 222–224
Systems thinking, 194
Take–make–waste model, 193
Technological innovations, 190
TEN-CEL™, 350
Tesla’s supply chain model, 83
Textiles
industry, 345–346
and workwear, 333
Theoretical lenses, 206
Theory-centric second-order themes, 98
Third-party reverse logistics providers, 195
TJ Maxx, 181
Total cost of ownership (TCO), 330
Total renewable electricity net generation (TRENG), 242
Touchpoint, 346
Tourism, 313–315
Tourism destination networks, 314
“Trade-in” initiative, 157
Transactions, 191
Transparency, 190–191, 362, 364
Trees, 29
Two-dimensional stacked graphs (2D stacked graphs), 113
Uncertainties, 40–41
Union des producteurs agricoles du Québec (UPA), 305
United Nations World Tourism Organization (UNWTO), 314–315
Upcycling, 36
Upcycling Frass, 275
regulatory barriers and opportunities to, 276–278
Users of recycled materials, 347–349
Value
chains, 90
co-creation, 90
comparison between secondary market and traditional retailers, 175–176
creation, 90
proposal offered, 94
propostion, 93
retailers, 175
Value retention processes (VRPs), 221
Vendor Managed Inventory (VMI), 145
Verifiability, 190–191
Vraa Dampvaskeri (VD), 333–334
Walgreens, 175
Waste, 4, 30, 143–144
 reduction, 204
 reusers of waste material, 345–347
Waste Management Act, 177
Waste2Wear (Shanghai-based
decomposer), 55
Wastewater treatment plant (WWTP), 42
Web of Science Core Collection, 219
Web-based platforms, 179

Western Cape Industrial Symbiosis
 Programme (WISP), 37
World Business Council for
 Sustainable Development
 (WBCSD), 179
World Economic Forum circular
 economy initiative, 78
World Wildlife Fund, 358
Zero Waste Programme for Europe, 177