Index

Abnormal returns (AR), 283
analysis, 282–283
calculation approach, 281
Academic skills, 128
Actual sustainable consumption (ASC), 114
Actuation, 79
Advertising, 10
After-cyber-attack sample, 221
Agility, 168
Agricultural/agriculture
activation by variable-rate
technology, 79
advanced sensing technologies, 85
agriculture 5.0, 76
impact of agriculture on food
security, 71–73
crop, 77
data, 78–79
decision-making, 79
developments in agriculture
technology, 75
industry, 71
platforms supporting detectors,
77–78
role of IoT in, 85
stakeholders, 79
Agroindustrialization, 73
fifth industrial revolution, 75
fourth industrial revolution, 74–75
second industrial revolution, 74
third industrial revolution, 74
Aircraft systems, 77
Algorithm management, 233
American Management Association,
73
Analytics, 189
Android Application, 86
Anti-herding behavior, 221
Anti-Money Laundering Act 2006,
183
Anti–Money Laundering Regulations
of 2012, 177, 183
API, 41
Articles, 7
Artificial intelligence (AI), 3, 6, 16,
21, 59, 74, 150, 176, 189,
232–234, 279, 296–297
AI-enabled devices, 311
EE and attitude toward, 240
emergence of industry 5.0 and role
of, 21–22
marketing, 197
Attitude toward act/behavior (ATB),
250
Attitude toward artificial intelligence,
233, 235–236
Augmented Dickey–Fuller test (ADF
test), 224, 226
Augmented reality (AR), 23, 197
for marketing, 197
Automated Teller Machines (ATM), 40
Automation, 19, 190
strategies to enhance automations
in industry 5.0, 20–21
Average variance extracted values
(AVE values), 257
Banking and Financial Institutions
Act, 183
Banking industry, 40, 294
at age of industry 5.0, 303–304
challenge of rising costs, 302
challenges faced by banks in
adoption of AI and
blockchain, 301–303
current applications of AI and
blockchain in, 296–301
employment challenges, 301
ethical challenges, 302
methodology, 295–296
performance challenges, 301
regulatory challenges, 302–303
security, privacy, and trust
challenges, 302
Banking services, 41
Banks, 280, 294
technological know-how within,
43–45
Barclays, 297
Bartlett’s test, 109
of sphericity, 238
Begging methods, 70
Big data, 59, 74, 189, 232
Big Data Analysis, 74
Bio economy, 6
Bio-based products, 6
Bioenergy, 6
Bitcoin, 303
Blockchain, 21, 83, 176, 181, 232, 295,
297–301
blockchain-based cryptocurrencies,
300
on food security, impact of, 82–84
integrations for FSC, 84–85
Blockchain-based IoT-based food
traceability system
(BIFTS), 83
Blogs, 7
Books, 7
BRUSCHETTA (blockchain based
certification application), 82
Business domains, 40
Business implications, 113
Business model, 207–208
innovation, 156, 160
Buy moments, 275
Capital asset pricing model (CAPM),
282–283
Causality test, 226–227
CBSL, 45
Centre of Excellence for ICT in East
Africa (CENIT@EA), 182
Challenges of using ICT in Indian
higher education system, issues and,
96–100
Chatbots, 296–297, 304
City as emergency environment,
60–61
Cloud computing, 74, 176, 189, 232
Cloud technologies, 21
Co-integration test, 223
Co-learning approach, 120
Cognitive computing, 195
Cognitive engagement (CE), 237
Collaborative education on digital
platform, 148
Collaborative robots (CoBots),
310–311
Collecting methods, 70
Collectivism, 48
Commercial data management
systems, 79
Commercial livestock production, 87
Communication, 40
Competitive advantage
innovation and, 32
learning and, 32–33
Composite reliability (CR), 257
Computational logic, 300
Computer fraud, 181
Computer Misuse and Cybercrimes
Act 2018, 181
Computer-mediated communication,
147
Computer-supported collaborative
learning (CSCL), 147
Computers, 99
Conscious consumerism of
sustainable products
academic implications, 113–114
awareness and purchase of
sustainable/green products,
109
business implications, 113
demographic information, 109
exploratory factor analysis and
scale reliability analysis,
information on sampling design, 106
KMO and Bartlett’s Test, 111
likely to buy sustainable products in next five years, 110
measure of CSC, 107
measurements, 108
methodology, 106–107
objectives of study, 107–108
opinion on likelihood to use products meant for reused, repaired, recycled, and upcycled, 110
opinion on sending disposal for landfill, 110
results, 108
statistical method, 108
Conscious consumption, 113
of sustainable products, 104, 107
Conscious sustainable consumption (CSC), 108
Constructivist teaching methods, 95
Consumer buying behavior, 268
Consumer education, 105
Consumer interaction and satisfaction, 276
Consumer-generated content (CGC), 196
Contagion effect, 220
Content writer, 142
Continuous optimization, 212
Converging technologies, 74
Copywriter, 142
Core values, 8–9
Corona virus (COVID-19), 57, 60, 204
first case of, 59
outbreak, 61
pandemic, 64
Corporate and personal mindset, 169–170
Corporate culture, 169
Corporate governance, 170–171
Corporate values, 159
Cradle-to-Cradle approach (C2C approach), 113
Creative content, 196
Credit Reference Burial Regulations, 183
Cronbach’s alpha, 238
Crop, 77
scouting, 78
Cross-sectional absolute deviation model (CSAD model), 220
Crypto, 21
Customer data collection, management, and analysis, 176
Customer experience, 11, 193–194, 205–206
Customer involvement, 168
Customers, digital literacy of, 46
Cyber attacks, 220
Cyber espionage, 181
Cyber-physical systems (CPS), 20, 22
Cybercrimes, 179, 220
data and methods, 221–223
findings, 223–228
Cybercrimes Act, 183
Cybersecurity, 19–20
Cybersquatting, 181
Data analysis procedure, 161–164
Data privacy, 182
Data Protecting Act of 2019, 182
Data science, 232
Data-driven marketing, 195
Decision-making, 79
Deep learning, 79
Deposit insurance, 281
Developing economies, 156–157
Digital banking (DB), 41–42
causes influencing DB adoption, 47–48
ecosystem, 41
ecosystem in SL, 42
Digital capabilities, 205, 208
Digital disruption, 156
findings, 164–171
recommendations, and future research directions, 171–172
research methods, 160–164
theoretical background, 157–160
Digital DNA culture, 210
Digital financial and legal
transformation for Industry
5.0, 178–179
Digital financial transformations
in East Africa, 180–181
legal environment for, 181–183
Digital infrastructure, 42–43
Digital innovations, 16–18
antecedents to sustainable business
model, 18
best practices of sustainable
businesses with digital
innovations in Industry 5.0,
18–20
emergence of Industry 5.0 and role
of AI, 21–22
industry 5.0 and human-centric
innovation, 22–23
methodology, 17
policy implications, 24
strategies to enhance automations
in Industry 5.0, 20–21
sustainable business model, 17
Digital investments well aligned to
strategy, 209
Digital leadership, 211–212
Digital literacy of customers, 46
Digital marketing, 11–12
Digital platform for research, 194
Digital revolution, 74, 204
Digital technologies, 8
and tools, 168
Digital transformation, 19, 29, 188,
179, 204, 295
building blocks, 205–208
challenges faced in digital
transformative process,
212–215
enablers of digital transformation,
208–210
factors, number of questions,
reliability, and validity
scales, 33
framework, 210–212
hypothesis test results, 35
innovation and competitive
advantage, 32
learning and competitive
advantage, 32–33
learning and innovation, 31–32
literature review, 30
methodology, 33
open strategy, 30–31
placement, 147
process, 3, 44
results, 34
Digital twin, 16
Digital Uganda Vision, 182
Digitalization, 6, 40, 207
Digitally aligned strategy, 208–209
Digitally connected customer-centric
approach, 210
Digitally mapped operational services,
209–210
Digitizations, 16, 18, 40
Digitized data, 40–41
Disparity in AI and CoBots, 314
Disruptive innovation, 157
Disruptive technologies, 160
Dissemination of knowledge, 143
Distance education, 92
Distributed cognition theory, 148
Distributed database, 300
Distribution channels, 41
Do moments, 274–275
Domino’s DXP, 16
E-banking, 41–42
E-commerce, 83
E-learning, 100
East Africa, 177
design, methodology, and
approach, 180
findings, 180–181
legal environment for digital
financial transformations,
181–183
literature review, 178–180
practical implications and
recommendations, 183
Economic dimension (ECOD), 108
Editorials, 10
Education, 40, 118
 literature review, 146–148
 outcome, 119
 system in Indonesia, 145
Education 5.0, 145
 key findings, 150
 methodology, 149
 online learning and 5. 0, 143–144
 research gaps, 149
 result, 150
 specifically includes in, 145
 theoretical foundation, 148
Educational institutions, 143
Educational technology, 95
Efficiency score, 282
Electronic and Postal
 Communications Regulations 2020, 183
Electronic banking, 41
Embedded banking, 45
Employee engagement (EE), 234–235
 and attitude toward AI, 240
Employee motivation, 170
Employees attitude, 233
Enablers of digital transformation, 208
 digital DNA culture, 210
 digital investments well aligned to strategy, 209
 digitally aligned strategy, 208–209
 digitally connected customer-centric approach, 210
 digitally mapped operational services, 209–210
Entrepreneurial intention (EI), 248–249
 dimensions, 251–252
 mediating effect of OTE in relationship between dimensions of EO and EI, 254–255
 and OTE, 252–254
Entrepreneurs, 248
Entrepreneurship, 247–248, 252–253
Environmental advertising, 10
Environmental dimension (ED), 108
Environmental sustainability, 80
Epidemic diseases
 alerting and mitigation, 62–64
 city as emergency environment, 60–61
 methodology, 59
 monitoring and detecting outbreaks, 61–62
Ethereum, 303
European Commission, 6
European Credit Transfer and Accumulation System, 146
European Union (EU), 71, 177
Exchange-traded funds (ETFs), 297
Expert systems, 79
Exploratory factor analysis, 109
External influences, 171
Extra virgin vegetable oil (EVOO), 82
Facebook, 296
Factory 5.0 model, 16
Farm management computer code solutions, 78
Farm management information system (FMIS), 78, 84
Federal Trade Commission's Act (FTCA), 177
Feed conversion ratio (FDR), 87
Field-level Geographic Information System (FIS), 78
Fifth Industrial Revolution, 75
Filtration effects, 276
Financial businesses, 220
Financial innovation, 281
Financial services, 233
 conceptual model and hypothesis, 235–238
data analysis and findings, 239–240
EE and attitude toward AI, 240
literature review, 233–235
managerial implications, 242
methodology, 238–241
moderating impact of
demographic factors, 240–241
suggestions for future studies, 242
FinTech, 279, 294–295
data and methodology, 282–284
efficiency and profitability analysis,
283–284
findings, 284–290
firms, 220
literature review, 281–282
recommendations and practical
implications, 290–291
Firms, 204
business model, 160
Focus group discussion technique
(FGD technique), 149
Food, 6, 70
impact of food production on food
security, 71–73
industry, 71, 73
property system, 82
trade, 86
Food security, 70–71, 80
impact of agriculture and food
production on, 71–73
agroindustrialization, 73–75
benefits of using IoT Platform in
FSC, 82
impact of blockchains on, 82–84
developed FSC IoT Technology, 81
developments in agriculture
technology, 75–79
influence of IoT on, 81
IoT and Blockchain Integrations
for FSC, 84–85
IoT’s role in livestock production,
87
precision farming using IoT, 85–86
role of FSC in relation to, 80
role of IoT in Agriculture, 85
technology’s role in sustaining
water resources and, 86–87
Food supply chain (FSC), 73
benefits of using IoT Platform in, 82
IoT and blockchain integrations
for, 84–85
IoT Technology, 81
role in relation to food security, 80
Foodstuffs, 81
Fourth Industrial Revolution, 73–75
Framework of digital transformation,
210
continuous optimization, 212
development of strategy, 211
digital leadership, 211–212
initial assessment, 210–211
roadmap and implementation in
agile way, 211
strategic analysis, 211
Fraudulent use of electronic data, 181
Fuzzy logic, 79
Gadgets, 8
Genetic algorithms, 79
Geographic Information System
(GIS), 78
Globalization, 59, 176
Go moments, 274–275
Google Classroom, 150
Government initiatives for ICT in
Indian Higher Education
System, 96
Green consumption, 104
Green marketing methods, 11
Green products, 105
Ground robots, 78
Ground station server (GSS), 81
Health, 40
professionals, 310
Healthcare, 268, 310
current applications of AI and
CoBots in, 312–313
disparity in AI and CoBots, 314
methodology and findings,
315–322
practitioner–patient relationships, 313–314
professional training on adoption of AI and CoBots, 314–315
Herding behavior, 220
estimation, 221–222
Herding result of test on pre-and post-cyber attack sample, 223–224
Herding tendency (see Psychological bias)
Higher education, 118
Human capital, 234
Human machine interfaces, 74
Human-centric innovation, Industry 5.0 and, 22–23
Human-centric technique, 8
Human-technology synergy, 8
Hypothesis testing, 258
ICAR, 92
In-depth interview as research method, 315–316
Inclusivity, 18
India, 92–96
Indian higher education system
government initiatives for ICT in Indian Higher Education System, 96
issues and challenges of using ICT in Indian higher education system, 96–100
list of initiatives and programs of government of India, 97–98
objectives of study, 94
paradigm shift in Indian higher education system, 94
research framework, 94
role of ICT in Indian higher education system, 94–95
Individual entrepreneurial orientation (IEO), 248
Indonesia, education system in, 145–148
Indonesian Government, 145
Industrial Internet of Things (IIoT), 189
Industrial Revolution, 6, 73
Industrial revolution 3.0, 74
Industrialization, 203
Industry 2.0, 40
Industry 3.0 era, 40
Industry 4.0, 6, 142, 294
challenges with, 188–189
Industry 5.0, 7–8, 16, 142, 189–190, 220, 310
banking at age of, 303–304
behavioral change, 9–10
best practices of sustainable businesses with digital innovations in, 18–20
cocreation, 7
core values, 8–9
and digital marketing, 11–12
topology of industry 5.0 and role of AI, 21–22
evolving customer needs, 9
and human-centric innovation, 22–23
literature review, 191–192
major findings, 12
marketing and mass communication, 10
methodology, 191
new marketing ecosystem in, 193–197
objectives of study, 190–191
product development, 10–11
product excellence and customer experience, 11
research implications and recommendations, 13
research methodology, 7
strategies to enhance automations in, 20–21
technology, 199
Information and communication technologies (ICTs), 84, 92, 176
government initiatives for ICT in Indian higher education system, 96
Index

issues and challenges of using ICT in Indian higher education system, 96–100
role in Indian higher education system, 94–95
Information Communication and Dissemination Systems (ICDS), 85
Information technology (IT), 73, 96, 211
Innovation, 31–32, 87
and competitive advantage, 32
Innovativeness, 251–253
Instagram, 296
Intelligent automation, 23
Intelligent objects, 81
Intelligent Precision Agriculture (IPA), 81
Inter-subjectivity theory, 148
Interaction process, 142
Interception of electronic message or money, 181
International Telecommunication Union (ITU), 179
Internet, 147
Internet of things, 74–75
Internet of Things (IoT), 16, 21, 59, 74, 178, 181–182, 189, 232, 294
on food security, influence of, 81
integrations for FSC, 84–85
mobile phones, 81
platform in FSC, benefits of using, 82
precision farming using, 85–86
role in agriculture, 85
role in livestock production, 87
tools, 59
Job–demand–resource model (JD-R model), 235
Johansen co-integration examination, 224, 226
Journals, 7
Kaiser–Meyer–Olkin (KMO), 109, 238
KBW index returns, 221
Kenya Information and Communication Regulation, 182
Know moments, 272
Knowledge transfer process, 144
“LankaQR” program, 45
Leadership style, 170–171
Learning, 31–32, 142, 148
and competitive advantage, 32–33
learning-effect hypothesis, 221
models, 151
outcomes, 119
skills, 118–119
systems, 150
Legal environment for digital financial transformations, 181–183
Levene’s test, 130
Livestock production, IoT’s role in, 87
London sewer system, 57
Long-run causality, 226–227
Long-run equilibrium, 226
Long-term volatility analysis of pre-cyber attack sample, 224–226
of post-cyber attack sample, 226–227
Low-tech firms, 156–157, 164
Low-tech mechanization, 76
Machine learning, 176, 189, 195
MANCOVA, 130–133
Levene’s test of equality of error variances, 130
multivariate tests, 132–133
test, 129
tests of between-subjects effects, 131
Map format, 78
Market vendors/merchants expansion of E-banking service providers in market, 45
technology adoption in, 45–46
Marketing, 6, 10, 188
automation, 196–197
Mass communication, 10
Massive open online courses (MOOC), 118, 145, 150
conceptual framework, 118
customers, 124
education outcome, 119
elements, 123
learning skills, 118–119
literature review, 119–129
MANCOVA, 130–133
objectives of study, 129
reliability test, 129–130
research methodology, 129
results, 129
suggestions and implications, 134
Mechanical knitting machines, 73
Mediation analysis, 258–259
Micro-moments, 269
data analysis, 272–275
findings, 275
limitations, 276–277
managerial implications, 276
studies, 268
suggestions, 275–276
Milk, 81
Minimally invasive surgery (MIS), 310
Mitigation, 62–64
MITWPU University, 106
Mobiles, 41, 270
money, 178, 180
Modern agriculture, 78
Modern education system, 117
Money laundering (ML), 177
Moodle, 150
Multiculturalism, 59
Multiple regression analysis, 240
Network-based MOOC, 128
Networked learning, 147
Neural networks, 21, 79
New marketing ecosystem in industry 5.0, 193–197
Nutritional security, 80
Obsolescence, 156
One Note, 150
Online collaborative learning (OCL), 143
Online communication, 128
Online learning and 5.0, 143–144
Open data, 30
Open government, 30
Open innovation, 30
Open learning process, 35
Open science, 30
Open strategy, 30–31
paradigm, 31
Open-source software, 30
Openness, 30, 250
classical framework, 250
data analysis, 258–259
hypothesis development, 251–255
limitations and future scope of work, 261–262
practical implication, 261
research method, 255–258
theoretical implication, 260–261
Openness to experience (OTE), 237, 248, 250
dimensions of EO and EI, 252–254
mediating effect of OTE in relationship between dimensions of EO and EI, 254–255
Operational process, 206–207
Optimal lag, 224
length, 226
Organizational culture, 169–170
Organizational structure, 168–169
Organizational values, 159
OTE, conscientiousness, extroversion, agreeableness, and neuroticism (OCEAN), 250
Outcome-as-a-service, 11
Pay&Go, 46
Payment platforms, 41
Pedagogy, 148
Peer-to-peer transmission (P2P), 30
Perceived behavioral control (PBC), 105, 250
Perceived enjoyment, 300–301
Perception of conscious consumption of sustainable products, 104
Perishable FSC (PFSC), 82
Personal Financial Information (PFI), 177
Personal identification numbers (PIN), 40
Personality trait, 248, 250
Personalization, 194–195
Philip–Perron test (PP test), 224, 226
Physical cyber systems, 74
Pop-up advertisements, 273
Power distance (PD), 48
Practitioner–patient relationships, 313–314
Precision agriculture (PA), 76
Precision Farming Using IoT, 85–86
Predictive analytics, 195
Proactiveness, 252–253
Product development, 10–11
Product excellence, 11
Professional training on adoption of AI and CoBots, 314–315
Profitability, 280 (see also Reliability) analysis, 283–284
Programmable logic controllers (PLCs), 73
Project-based learning, 151
Proximal detection, 77
Proximal sensing, 77
Psychological bias, 220
Psychological empowerment, 236
Psychological state engagement, 236
Qualitative method, 315
Quantum computing, 20
Questionnaire, 238
Quick response payment (QR payment), 42
Real-time precision agricultural mechanism, 85
Reliability, 129
statistics, 130
test, 129–130
Remote sensing platforms, 77
Repair, reuse, and recycle (three R), 104
Resilience, 9
Resources, processes, values framework (RPV framework), 158–160
Retail, 269
Risk-taking ability, 251
Risk-taking proclivity, 251
Robo-advising, 295
Robo-advisors, 297
Robotic Process Automation (RPA), 297
Robotics, 74, 189
and sensor technology, 74
Robots, 8
Sampath Bank, 44
SARS, 57
Satellites, 77
Saving advertising costs, 276
Schools, 92
Second Industrial revolution, 74
Secondary resources, 7
Self-regulated learning, 119
Sensing subsystem, 85
Sensors, 77
Short-run causality, 227
Simple regression analysis, 240
Smart city, 56, 61
effects of, 59
Smart devices, 81
for shopping activities, 193
Smart Farming, 78
Smart technologies, 16, 190
Smart transformation (see also Digital transformation)
alerting and mitigation, 62–64
city as emergency environment, 60–61
methodology, 59
monitoring and detecting outbreaks, 61–62
necessary in cities, 59
Smartphones, 86
Social dimension (SD), 108
Social media, 10, 196
Socially acceptable methods, 70
Society 5.0, 22, 142
Socio-cognitive conflict theory, 148
Socio-technical systems theory, 179
Software Services Agreement (SSA), 79
Soil moisture data, 86
SOLO, 46
Sri Lanka (SL), 46
acceptance of DB among customers in, 46–47
acceptance of DB among customers in SL, 46–47
causes that influencing DB adoption, 47–48
DB ecosystem in, 42
digital infrastructure, 42–43
digital literacy of customers, 46
technological know-how within banks, 43–45
technology adoption in market vendors/merchants, 45–46
transactions as percentage, 47
Stakeholders, 72
Statistical Package for Social Science (SPSS version 21), 33
Stealing methods, 70
Steam engines, 74
Strategic asset allocation (SAA), 297
Student-centered learning approach, 151
Subjective criteria, 105
Subjective norms (SNs), 250
Sustainable agriculture, 70
Sustainable business model, 16–17
antecedents to, 18
Sustainable businesses with digital innovations in Industry 5.0, best practices of, 18–20
Sustainable competitive advantage, 32
Sustainable consumption, 105
Sustainable development, 104–105
Sustainable Development Goals (SDGs), 112, 176
Sustainable livestock production methods, 87
Sustainable products, 104, 108, 113
sustainable consumption for, 104
Sustainable tourism, 178
Sustaining innovation, 157
Synthetic theory of law and technology, 179–180
Task-based MOOC, 128
Teaching process, 148
Technological revolution, 74
Technological Society 4.0, 142
Technology, 6, 9–10, 81, 144, 204, 207
adoption in market vendors/merchants, 45–46
management strategy, 168
role in sustaining water resources and food security, 86–87
technology-based online education, 151
technology-driven progress, 8
Telegram, 296
Theory of disruptive innovation, 157
Theory of planned behavior (TPB), 248, 250
Third Industrial Revolution, 73–74
3D-printing technology, 23, 74
Top-level management, 170
Traditional agriculture, 78
Trait engagement, 236–237
Transformational solutions, 295
Transparency with pseudonymity, 300
Travel and tourism, 268–269
Triple bottom Line (TBL), 108
Uncertainty avoidance (UA), 48
United Nations Educational, Scientific, and Cultural Organization (UNESCO), 93
Variable-rate technology, activation by, 79
Variance decomposition test, result of, 228
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector auto-regression model (VAR model)</td>
<td>220, 223–226</td>
</tr>
<tr>
<td>Vector error correction model (VECM)</td>
<td>223, 226</td>
</tr>
<tr>
<td>Videoconferencing</td>
<td>92</td>
</tr>
<tr>
<td>Virtual learning environment</td>
<td>144</td>
</tr>
<tr>
<td>Virtual reality (VR)</td>
<td>199</td>
</tr>
<tr>
<td>Vlogger</td>
<td>142</td>
</tr>
<tr>
<td>Volatility</td>
<td></td>
</tr>
<tr>
<td>estimation</td>
<td>222</td>
</tr>
<tr>
<td>spillover</td>
<td>220</td>
</tr>
<tr>
<td>Walmart</td>
<td>17</td>
</tr>
<tr>
<td>Water resources and food security, technology’s role in sustaining</td>
<td>86–87</td>
</tr>
<tr>
<td>WhatsApp</td>
<td>296</td>
</tr>
<tr>
<td>World Bank</td>
<td>71</td>
</tr>
<tr>
<td>World Bank study</td>
<td>50</td>
</tr>
<tr>
<td>World Food Organization (WHO)</td>
<td>70</td>
</tr>
<tr>
<td>You tuber</td>
<td>142</td>
</tr>
<tr>
<td>Zero moment of truth (ZMOT)</td>
<td>270</td>
</tr>
</tbody>
</table>