Index

Abstract conceptualization, 3–4, 212–213
Academic Systems of Social Pertinence (SAPS), 309, 313–314
Academics’ perspective on learning ecosystem, 25–26
Accounting, Finance and Economics department (AFE department), 131–132
Achievement, 141–142
Acting Stage, 365
Active experimentation, 3–4, 212–214
Active learning, 48, 132, 178, 326, 364
Adaptability, learning and, 223
Aerospace Engineering Education CBL experiences, 179–181
evaluation surveys, 182–185
lessons learned, 191–194
tools and examples of application, 181–191
validated instruments for assessment of competencies under study, 186–191
Affiliation statistics, 102–105
2030Agenda, methodology to address real challenges of, 285
Altobrembo, 167
challenge, needs, and solutions for, 167
Annual Investment Committee Meetings and Board of Advisors, 141–142
Applied knowledge, 234, 238
Artificial Intelligence, 200
Assessment, 44, 47, 50–51, 84, 136–137
CBL and, 229, 231–232
in Healthcare Fund Challenge, 237, 239, 242
Authentic learning activities, 49–50
Awards, 141–142
Bachelor End Project (BEP), 18
Bareways, 257
Bergamo B&B and Co., 169
challenge, needs, and solutions for, 170
BibExcel, 99–100
Bibliographic coupling analysis, 105
Bibliometric analysis, 99–100, 102
BigBlueButton, 260
Bioengineering, CBL in, 78–79
Bloomberg (digital platforms), 139
Bottom-up process, 38
Brainstorming, 132
Building Competencies for Competitive Companies project (COM3 project), 206
Business networking, 145–146
Cable Car Challenge, 76
CAD software, 76
CANVAS tool, 79–80, 88
Career networking, 145–147
Center for Educational Development and Innovation (CEDDIE), 80–82
Challenge-Based Innovation experience (CBI experience), 260–263
course setup, 260
course structure, 262–263
learning goals and deliverables, 262
stakeholder role, 261–262
Challenge-Based Learning (CBL), 1–2, 5, 7–8, 14, 36, 72, 79, 94, 131–132, 158, 178, 199–200, 222–223, 228, 252, 282, 285, 302, 326, 328, 346, 364, 391–392
ability to perform, 374
affiliation statistics, 102–105
and assessment, 229, 231–232
author influence, 102
background, 36–37
bibliometric analysis, 102
in bioengineering, 78–79
CBL Compass, 6, 36, 39–40
impact of CBL implementation in Tecnologico de Monterrey, 84–85
CBL/DT and specific subjects, 98–99
components of engineering ethics educational initiatives, 256
conceptual framework development for, 38–40
critical elements of institutional influences in, 307–308
defining search terms, 100
design principles, 39
design principles and compass indicators, 40–52
in digital age, 158–159
E3 mapping using, 57–59
empirical work on, 36
evaluating, 111
experiences at beginning of undergraduate engineering programs and i-Semester, 76–79
experiences in Aerospace Engineering Education, 179–181
first attempts of CBL, 73–76
focus on global themes, 43
framework, 4
future directions, 62–63
future of, 85–89
within future of higher education, 396–406
i-Semester as key element for CBL experience, 77–79
implementing, 53–60
initial data analysis, 100
initial search results, 100
involvement of stakeholders, 43
learning experience, 364–365
learning goals of, 254–255
linking DT and CBL, 97–98
main student learning assessment tools applied in CBL, 233
methodology for CBL implementation at TEC, 79–84
methodology to know and propose solutions to DGS, 285–287
network analysis, 105–110
real-life and open-ended challenges, 42
research decisions taken in, 195
solutions and recommendations, 61–62
started at UPAEP, 312–314
support, 51–52
systematic analysis of CBL literature, 99–110
teaching and learning, 43–51
teaching engineering ethics via, 255–268
as teaching strategy, 96–99
vision of, 40–43
Challenge-based Learning for Robotics Students by Engaging Start-Ups in Technology Ethics project (CREATE project), 252, 255–256
Challenges, 228, 302
approach at University of Trento and Healthcare Fund Challenge, 232–237
CBL Phases in Healthcare Funds Challenge, 234–236
concept, 94
definition, 405–406
provider, 330
recommendations, 406
Chartered Institute of Logistics and Transport (CILT), 204–205
Chief Executive Officer (CEO), 139
Chief Financial Officer (CFO), 139
Chief Investment Officer (CIO), 139
Classic descriptive statistics, 193
Classroom management, 234
Closed questions, 19
Coaching sessions, 267
Collaboration, 209–210, 225, 392, 401–402
 recommendations, 402
 UoL4. 0 Challenge contribution to, 211
Collaborative learning, 44, 47–49
Collaborative work, 78–79
Commercial awareness, 224
Common good pedagogy, 310–311
Communication, 209, 223, 225, 234, 238, 338
 UoL4. 0 Challenge contribution to, 210
Conceiving-Designing-Implementing-Operating (CDIO), 37
Conceptual framework of CBL, 36
Concrete experience, 212–213
Concurrent Design Facility (CDF), 180
Connections-based learning, 306, 308, 311
Contextual teaching and learning, 3
Contrasting learning modes, 203
Control group (CG), 181
Cooking as communication trigger, 168–169
Corporate Social Responsibility framework, 312
COVID-19, 96, 346
 effects in teaching delivery, 215–217
 fund portfolio during, 145
Creative tension, 3–4
Creativity, 132, 146–147, 209–211, 225
 innovation and, 400–401
 recommendations, 401
 UoL4. 0 Challenge contribution to, 211
Crisis on the Campus, 393
Critical thinking, 209, 224
 in CBL, 230
 UoL4. 0 Challenge contribution to, 210
CSI CRIME scene, 75
Cultural activities, 71
Curating, 209, 211, 225
 UoL4. 0 Challenge contribution to, 212
Curricular activities, 27
Curricular units (CUs), 364
Curriculum
 curriculum-wide initiatives, 37
 design, 37
 planning for tourism HE, 159–160
Data analysis process, 100, 193, 207, 209, 350–351
Data Appeal platform, 164–165
Data collection process, 207–209
DataStream, 139
Deliverables, learning goals and, 258–259
Democracy, 311
Design education, 112–113
Design principles of CBL, 36, 60
Design thinking (DT), 4–5, 94
 background, 95–96
 CBL as teaching strategy, 96–99
 evaluating CBL, 111
 keywords and eigenvector centrality, 127–128
 learning for sustainability, 110–111
 linking DT and CBL, 97–98
 literature analysis, 112
 pedagogy for technological competences, 111–112
 systematic analysis of CBL literature, 99–110
Destination management
 organizations (DMOs), 7, 158
 challenges and needs, 172–173
 cooking as communication trigger, 168–169
curriculum planning for tourism HE, 159–160
dealing with overtourism, 170–172
future directions, 172–173
guest guidance platforms, 169–170
local actors’ involvement, 166–167
quality and implied needs, 163–164
tourism, higher education, and CBL, 158
tourism data sharing and reliability, 164–165
tourism HE workshop in time of pandemic, 161–163
tourism management and CBL in digital age, 158–159
web content management, 167–168
DiaGame, 265
Digital Experimentation Toolkits (DExTs), 96–97
Digital repository, 319
Digital society, 96–97
Digital technological tools, 79–80
Digital technology, 346
Digital transformation, 346
Disciplinary competences, 78–79
Document analysis, 207–209

e-Tourism, 159
Educare, 200
Education and Student Affairs (ESA), 15
Education and Training 2020 framework, 364
Education for Sustainable Development (ESD), 110–111, 295–296
Education of engineering ethics, 253
Educational challenge, 234
Educational concepts, 36–37
Educational innovations, 29
Educational Model U50, 306–308
Educere, 200–201
Eigenvector centrality (evc), 108–110
Eindhoven Engineering Education (E³), 36, 53, 56, 60, 264
CBL design principles use to guide redesign of, 59–60
mapping using CBL Compass, 57–59
Eindhoven School of Education (ESoE), 15
Eindhoven University of Technology (TU/e), 5–6, 14, 36
course setup, 264–265
course structure, 266–268
experience of, 263–268
learning goals and deliverables, 266
stakeholder role, 265
TU/e against Covid 19 platform, 27
TU/e Contest, 27
ELARA Challenge, 74
eLUMEN tool, 79–80, 88
Emerald Challenge-Based Learning Handbook, 1–2
Employability
employability-based teaching and learning, 136–137
programmes, 352
skills, 359
Engagement, 365
EntreComp, 243
Entrepreneurial education, 308–309
Entrepreneurial mindset, 14
Entrepreneurship, 71, 308
Equity research writing stage, 141–142
ESA Concurrent Engineering Challenge (ESA CEC), 180
Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio (ETSIAE), 178
Ethics, 78–79
instruction, 253–254
learning goals of CBL, 254–255
workshops, 267
“Ethics of Technology”, 257
European Consortium of Innovative Universities (ECIU), 228, 327
European Union (EU), 393
Evaluation instruments, 84
Evaluation surveys, 181–182, 185, 192
Evidence-based solutions, 365
Exams, 193
Experience
grasping, 212–213
transforming, 213–214
Experiential learning, 132, 201–202
Experimental design, 192
Experimental group (EG), 181
Expert interviews, 329–330
Expert meetings, 267–268
Exploratory analysis, 288–289
External partners in CBL
background, 327–329
benefits of working with, 331–333
courses and data set used to extract and reflect on roles and function of, 329–330
future directions, 339–340
issues related to working with externals, 333–334
reflection on stakeholder activities, 334–339
roles and functions, 329–331, 334
at TUHH, 329
Extracurricular activities, 27
Facilities/resources, 52
Faculty, 80
Federal Attorney for Environmental Protection (PROFEPA), 74
Feedback providers, 331
Finance, 134
Lincoln Student Managed Investment Fund, 136–150
Raison d’etre and background, 133–136
Financial crisis (2009), 135–136
Financial education, 133–134
Financial skills, 134
Financial viability of UoL4.0 Challenge, 218
5-point Likert-type scale, 209
5G-Mobix, 265
Flexibility, 404–405
recommendations, 405
food21, 257
Form@tive Project, 9, 364
ability to perform challenge-based learning, 374–375
background, 364–365
challenges defined within CBL projects, 367–369
clusters of improvement suggestions, by future teachers, 385–387
clusters of positive and negative aspects, by future teachers, 379–381, 384
cycle of, 366–385
expected/developed learning during curricular units, 370–372
expected/developed transversal learning skills, 372–374
results of first cycle of, 376, 379, 385, 388
solutions and recommendations/lessons learned, 388
for teacher training path, 375–376
Formative program, 310
Fund, 148–149
benefits to students and achievements of, 144–148
management, 131–132
portfolio during Covid-19 pandemic, 145
Fusion Point (FP), 260–263
Future-focused publications, 392
Future-proof learning, 30
Gateway49 start-up accelerator, 256–257
Gather Town, 271–272
Gephi (open-source visualization tool), 99–100, 105
Global themes, 43, 392, 396, 398
recommendations, 398
Goodlad’s model, 252
Grand Challenges, 14
Innovation Space Project (ISP), 5–6, 16–17
course, 17
Innovative educational concept, 22
Inquiry-based learning (IBL), 365
Inquiry-Based Science Learning (IBSE), 365
Institute for the Future of Education, 88
Institutional support, 269
Instrumental education, 393–394
Integrative Projects for Social Pertinence (PIPS), 311–312
Intellectual property, 72–73
Inter/multidisciplinarity, 399–400
recommendations, 400
Interdisciplinarity, 49
Interdisciplinary learning, 44, 47, 49
Interdisciplinary student teams, 15
International Organization for Standardization (ISO), 158
Internationalization, 71
Intervention through CBL, 315–317
Interview approach, 350–351
Interviewees, 352
Investment Managers, 139
Investment proposal and implementation, 141–142
iPad mobile learning technology, 4–5

Key CBL characteristics (KCs), 19–20
Keyword clustering network, 107–110
Keyword co-occurrence analysis, 105
Knowledge
creation, 144–145
sharing and award-winning industry links, 148

Leadership, 71, 223
Learners, 228
Learning
activities, 49–50
and adaptability, 223
CBL, 43–51
contract, 238–240
contract, 243
diaries and outcomes, 240
diaries and outcomes, 243–244
stages in tourism management, 160
for sustainability, 110–111
use of learning technology, 44–47
Learning ecosystem
academics’ perspective, 25–26
background, 15–16
CBL, 14
creating full, 16–28
future research directions, 28–30
other elements of learning ecosystem, 26–27
students’ perspective, 18–25
two flagship CBL courses, 16–18
impact of whole learning ecosystem, 27–28
Learning goal
of CBL ethics instruction, 254–255
collaborative learning, 48–49
and deliverables, 258–259, 262
development of T-shaped professionals, 48
interdisciplinary learning, 49
self-directed learning, 48
“Learning trajectories”, 48
Liberal education, 393–394
Lincoln Higher Education Research Award (LHERA), 206
Lincoln International Business School, UoL4.0 Challenge at, 348–349
Lincoln Student Managed Investment Fund (LSMIF), 131–132, 136, 145, 150
benefits to students and achievements of fund, 144–148
current development and future direction, 148–150
current portfolio and recent experience, 140–144
inception, 136–138
membership and organization, 138–140
Local Action Group (LAG), 166
Local actors' involvement, 166–167
Local government partners, 357–358
London Stock Exchange, 140

Massachusetts Institute of Technology (MIT), 303
MAXQDA software, 329–330
MB Securities Joint Stock Company (MBS), 137–138
Mechanical and mechatronics engineering, CBL in, 79
Membership, 138–140
Microbusinesses, 354
mobOx, 257
Modern society, 14
Moodle (e-learning platform), 260
Moral agency and action, 255
Moral design, 255
Moral situatedness of students, 254–255
Motivational Diagnosis Instrument for Engineering Education (MDI-EE), 186
motivational indicators of, 187–191
Motivators, 331
Multidisciplinarity, 392–393, 399–400
Multidisciplinary approach, 2
Municipal development with SDG approach, 289
Municipality, analysis and diagnosis of, 288
Musk, Elon (Astra Nova), 132

“Nano Challenges”, 4–5
Natix, 257
Network analysis, 99–100, 105, 110
keyword clustering network, 107–110
keyword co-occurrence analysis, 105
Networker, 331
Networking, 146–147
New Engineering Education Transformation (NEET), 29–30
Non-STEM, 94–95, 98–99

Nongovernmental Organizations (NGOs), 1–2
NVivo software, 207, 209, 350–351

“On stock” education, 30
Online CBL pedagogy, 271–272
Online pedagogy, 94
Open-ended questions, 19, 21
metathemes and main themes identified from, 21, 24
themes and metathemes identified from, 23
Operational process, 141–142
Operational Research Society (ORSoc), 204–205
Operations Management (OM), 199–200, 202, 348
Operations strategy, 202
Organization, 138, 140, 223
Overtourism, 170–172
Pedagogical theory, 286
Pedagogy for technological competences, 111–112
Peer evaluation, 241, 244
Peer support, 145–147
Peer-to-peer meetings, 268
Perceived self-efficacy, 332–333
“Perception continuum”, 203
Perseverance and initiative, 224
Personal goal, 234, 238
Personal Growth, 146–147
Personalized learning, 405
PjBL. See Project-based learning (PBL)
Planning and Management of Tourism Systems (PMTS), 158–159
Post investment monitoring and reporting, 141–142
Practical experience, 144–145
Practice trading, 131–132
Practice-driven approach, 38
Preservice teacher, 365
Problem-based learning (PBL), 3, 37, 96–97, 158, 306, 308, 326
Problem-solving, 224, 234, 238
and critical thinking, 78–79
Process analysis, 202
Process-focused assessment, 50–51
Production and operations management (POM), 203
PROFEPA Challenge, 74
Project report, 259
Project-and-problem-based learning, 113–114
Project-based learning (PBL), 37, 72, 132, 178, 306, 308, 326
Project-Oriented Learning (POL), 3
Promoserio, 164
challenge, needs, and solutions for, 165
Public exhibition of student projects, 259
Puebla, CBL in
2030 Sustainable Development
Goals, 309–317
background, 303–304
focus, 304–309
future directions, 318–319
solutions and recommendations, 318
UPAEP, 304–305
Qualitative evaluations, 83–84
Quality and implied needs, 163–164
Quality education (SDG4), 72, 364
Quantitative analysis techniques, 193
Quantitative assessments, 83–84
Quantitative descriptive analysis, 369
Quasi-experimental design, 192
Real-world problems through
challenge based learning
background, 253–255
ethics instruction, 253–254
experience of CBI, 260–263
experience of Eindhoven University of Technology, 263–268
future directions, 272–273, 275
institutional support, 269
learning goals of CBL ethics instruction, 254–255
lessons learned, 268–272
online CBL pedagogy, 271–272
rationale and goals for teaching ethics via CBL, 254
stakeholder involvement, 271
student experience, 269–271
teaching engineering ethics via CBL, 255–268
Recruitment stage, 141–142
RED student team, 265
Reflection, 146–147
Reflective observation, 212–213
ReHero, 257
Reliability, 164–165
REMIND tool, 79–80, 88
Research-based learning, 306–308
Research-informed educational innovations, 38, 62–63
Robotics and Autonomous Systems, 256
Robots, 200
Rube Goldberg Challenge, 76–77
SARS-CoV-2 pandemic, 71
Science, Technology, Engineering, Arts, and Mathematics education (STEAM education), 96–99
Sciences didactics, 365
SDG Initiative at Tec, 298
Self-assessment tools, 230
Self-awareness, 14
Self-directed learning, 8, 44, 47–48
Self-leadership, 14
Self-perception of students, 184
Semistructured interviews, 350
Service-learning, 306–308
Significant experiences, 312
Skills
 21st century, 14
 financial, 134
Small and medium-sized enterprises (SMEs), 2, 346
Smart Energy Management Challenge, 75–76
Social innovation, challenge-based learning for
 2030 Sustainable Development Goals, 309–317
 background, 303–304
 focus, 304–309
 future directions, 318–319
 solutions and recommendations, 318
 UPAEP, 304–305
Social reconstruction project, 314–317
Social responsibility, 71
Socially Oriented Interdisciplinary STEM Research Group (SOI-STEM-RG), 70
Soft skills, 217
Solar Team Eindhoven, 15
Southern Association of Colleges and Schools of the United States of America (SACS), 70
Space, 15
Spanish Universidad International de la Rioja (UNIR), 204–205
Spatial Chat platform, 267–268, 271–272
Square model, 338–339
Square of Values, 326–327
Stakeholder, 15
 CBI experience, 261–262
 experience of Eindhoven University of Technology, 265
 involvement, 43, 271
 meetings, 259, 268
 role
teaching engineering ethics via
 CBL, 257
Stakeholder activities, reflection on, 334–339
“Standard Challenge”, 4–5
STEM, 98–99
Strategic planning with SDG approach, 289
Student
 active engagement, 203
 engagement, 148
 experience, 269–271
 learning processes, 326
 participation, 334–339
 partnership, 230
 perspective on learning ecosystem, 18–25
 satisfaction, 184
 skills and competencies, 394–395
 student-centered active learning,
 337–338
 student-centered learning, 326
 t-test, 182, 193
Student as Producer, 136–137, 148, 203–204
Supply chain modeling, 202
Sustainability, 311
 learning for, 110–111
Sustainable Development Engineering
CBL experiences in
\textit{i}-semester, 78
Sustainable Development Goals
(SDGs), 8–9, 70, 110–111, 309, 317, 364, 392
CBL started at UPAEP, 312–314
common good pedagogy, 310–311
connections-based learning, 311
formative program, 310
Integrative Projects for Social
Pertinence, 311–312
issues, controversies, and problems, 314
SDG 1, 314–317
significant experiences, 312

T-shaped professionals development,
44, 47–48
TA sessions, 267
Teacher support, 52
Teacher training path, Formative
Project for, 375–376

Teaching
CBL, 43–44, 47, 50–51
CBL as Teaching strategy, 96–99
with real challenges, 285–290

Teaching engineering ethics via CBL,
255–268
CBL Experience of University of
Lübeck, 255–260
course setup, 256–257
course structure, 259–260
learning goals and deliverables,
258–259
stakeholder role, 257
Teaching ethics
via CBL, 254–255
rationale and goals for, 254
Team building, 145–147
Team-based instructional change
model, 29
Teamwork, 14, 132, 223, 234, 237–238
Tec de Monterrey, 282
Tec21 Educational Model, 8, 70, 72,
282, 285–286, 328

Technische Universiteit Eindhoven.
\textit{See} Eindhoven University of
Technology (TU/e)

Technological competences, pedagogy
for, 111–112

Technology
in teaching and learning, 136–137
technology-based challenges, 96–97
use of, 51

Technology enhanced learning (TEL),
402–404
recommendations, 404

Tecnológico de Monterrey (TEC), 70
impact of CBL implementation in
Tecnologico de Monterrey,
84–85
challenge-based learning, 72–79
future of CBL, 85–89
manuscripts, 81–82
methodology for CBL
implementation at, 79–84

Tec21 Educational Model, 70–72
Test, 193
Thematic analysis approach, 350–351
Theory to practice, 144–145, 147

3D Printing, 76
Top-down process, 38
Topical meetings, 259

Tourism, 158
data sharing and reliability,
164–165
HE workshop in time of pandemic,
161–163
management in digital age,
158–159

Traditional educational models,
71–72
Traditional finance courses, 135
Traditional teaching approaches, 14
Training partner, 328–329
Transformational leaders, 309
Transformative value, 43
Transversal competences, 71
Tried-and-tested pedagogy, 98
Triple helix model of innovation, 132,
346
21st-century skills through challenge-based learning
background, 202–203
challenge-based learning project evaluation survey, 222
data collection and analysis, 207–209
effects of COVID-19, 215–217
evaluating effectiveness of UoL4.0 Challenge, 209–211
grasping experience, 212–213
implementation of CBL in UG, 199–200
limitations of research and future directions, 217–218
main focus, 203–211
origins, 204–205
other issues concerning CBL implementation, 214–215
reflections and lessons learned, 212–217
subsequent events, 205–207
transforming experience, 213–214

Undergraduate (UG), 134, 199–200
United Nations Millennium Goals, 70
United Nations Sustainable Development Goals (UN SDGs), 228, 282, 284, 297
analysis and diagnosis of municipality, 288
challenge and stages, 287
challenges, SDGs and proposed solutions, 292–293
competences evaluated and developed by students, 291
delivery of results, 289–290
evaluation, 293–295
exploratory analysis, 288–289
future directions, 295–296
methodology to address real challenges of 2030 Agenda, 285
results, 290–295
series of global challenges, 283–285
stages of SDG Challenge, 287–290

strategic planning with SDG approach, 289
success stories of municipal development with SDG approach, 289
teaching with real challenges, 285–290
United Nations’ 17 Sustainability Goals, 14
video Rubric, 295
written report Rubric, 294
Universidad Politécnica de Madrid (UPM), 7, 178
Universities, 30, 71
University experience with CBL, 314–317
University of Bergamo (UniBg), 158
University of Lincoln (UoL), 199–200
University of Lübeck, CBL experience of, 255–260
University of Trento, 8, 228
challenge approach at University of Trento, 232–237
University Social Responsibility, 312
University–industry linkages, 360
UoL4.0 Challenge, 7–8, 200, 202–204, 346
editions, 208
evaluating effectiveness of, 209–211
financial viability of, 218
at Lincoln International Business School, 348–349
UoL4.0 Competition, 204–205
UoL4.0 Design, 204
UPAEP, 304–305
Academic Systems of Social Relevance, 309
CBL started at, 312–314
Educational Model U50, 306–308
entrepreneurial and innovation education, 308–309
influences for challenge-based learning at UPAEP, 305–306
Index 425

UPM Concurrent Engineering Challenge (UPM CEC), 180–181
Utrecht University (UU), 27
Utrecht University Medical Centre (UMC), 27

Val Vertova, 171
challenge, needs, and solutions for, 171

Validated instruments for assessment of competencies under study, 181–182, 186, 191–192

Valuation techniques, 131–132
Value and Development Square, 326–327, 336
Value Square Model, The, 336

Vertical learning, 29–30

Video Rubric, 295

VisitBrembo, 168–169
challenge, needs, and solutions for, 168

VOLTTRON© (open-source software), 75–76

Wageningen University and Research (WUR), 27

Web content management, 167–168
Webex (e-learning platform), 260

Wilcoxon–Mann–Whitney test, 193

Wonder, 271–272

World-class production systems, 202

Written report Rubric, 294

Xochimilco Challenge, 74–75

ZIKLUM Challenge, 74

ZOOM tool, 88