Advanced Research Programs Agency, 9
Agile, 53
 continuous delivery methods, 25–27
 manifesto, 26
Agile enterprises, 22, 121
 conceptual model for, 75
Agile management paradigm evolution, 18
 agile continuous delivery methods, 25–27
 change and uncertainty mastering, 21
 change management, 18–20
 work on agility, 21–25
Agile manufacturing (AM), 4, 10–11, 13–14, 20–22
 enterprise, 24
 paradigm, 73
 structure, 23
Agility, 1–3, 9–10, 20, 23, 61–62, 97, 119, 129. See also Business agility; Information system (IS)
 attributes and skills, 25
 background of significant changes underlying, 10–13
 competencies and skills of IS professionals, 65
 components, 81
 definitions, 69–70
 dimensions, 10
 drivers, 75, 81–82
 factors, 23, 24
 ISD, 65
 of IT infrastructure design, 66
 in ITSM, 96–99
 production modes development and agility paradigm, 12
 research, 62
 role, 3–4
Agility DataBase Provider (DBPA), 87–88
Agility Forum, 9
Agility management (AM), 72, 103–106
Align, Plan, and Organize (APO), 48
Alpha error. See Type I error
Amazon, 118
Amazon Elastic Compute Cloud (EC2), 120
Amazon Simple Storage Service (S3), 120
Artisanal production, 10
Atapattu and Sedera’s process, 76–78
Attainment model, 102–103
Attributes of agility, 25
Automation, 5
Autonomy of enterprise application, 36–37, 40
Awareness, 132, 142
Block, 60
Board of Directors, 43
Build, Acquire, and Implement (BAI), 48
Business capability, 83
 competition, 13
 objectives method, 95
 practices, 1
Business agility, 5. See also Agility through CRM for customer satisfaction, 77–78
 IT as business agility obstacle, 4–5
 IT at service of, 5
Cabled IT architectures, 4
Capability Maturity Model (CMM), 49, 54
Capability Maturity Model Integration (CMMI), 42–43, 53–55
Capability of IS Agility, 81
CapEx, 121
Cascade Development, 26
CEO, 1, 5, 43
Change
 in entrepreneurial organization, 21
 management, 18–20
Change Management Advisory Boards (CABs), 51
CIO, 30, 41, 43
Cloud computing, 117–118
 adoption determinants, 7
 combining DOI and TOE, 125, 128
 factors studied influencing cloud adoption, 126–127
 goals and objectives of research study, 119–120
 impact on information systems agility, 146–147
 literature review, 120–121
 quantitative methodology, 135–150
 research methods, 133–135
 research model and hypotheses, 128–133
 studies, 122–123
 theoretical foundation, 121, 124–125
Cloud System (HP), 131
Cloud-hosted services, 42
 “Cloud” metaphor, 120
COBIT, 42, 45–50, 94, 99
 COBIT 2019, 49–50
 COBIT 5 PRM, 48–49
Cocreation, 52
Commercial and competitive sensing, 86
Committee of Sponsoring Organizations of Treadway Commission (COSO), 44, 55–57
Communication, 57
Company information systems, 42
Company strategy, 38–40
Compatibility, 61, 131, 140
Competence, 132, 142
Competencies of IS professionals, 65
Competitive pressure, 133
Complexity, 131, 141
 factors, 40–41, 141
Conceptual model
 to achieve IS agility, 84–85
 for agile enterprise, 75
 DBPA, 87–88
 level of agility need, 88–89
 proposed model contribution, 89–90
 security policy, 89
 sensing, 85–87
 for supply chain agility, 76
Consumer demands, 10
Continual quality improvement, 110
Continuous improvement, 19
Control activities, 57
“Control and control” type services, 94
Cost-savings, 130, 140
Crociotto and Youssef’s process, 73–74
Customer Relationship Management (CRM), 30
 business agility for customer satisfaction, 77–78
Dashboards, 42
Data
 analysis, 109–110
 collection, 107, 135
 processing systems, 30
 sovereignty, 133, 142
Decision-making system, 34
Deliver, Service, and Support (DSS), 48
Demographic information, 145
Department of Defense, 3
Department of Information Systems, 67
Deployment pipeline, 26
Developing Improvement Action Plans, 111–112
DevOps, 26, 50–51, 53, 95, 97, 98, 105–106, 113
 agility, 104
 ITSM maturity model, 107
 identification, 124–128
Digital technology, 42
Discover Do, Act, and Optimize (DDAO), 110–114
Distribution of enterprise application, 37
Dynamic capacity, 19
Dynamism of enterprise application, 38, 40–41

EIS governance, 42–47. See also Enterprise Information Systems (EISs)
 CMMI, 53–55
 COBIT, 47–50
 COSO, 55–57
 LIBRARY, 51–53
Elastic Cloud (Oracle), 131
Enterprise application
 autonomy, 36–37
 characteristics, 35
 concepts, 35–36
 dimensions, 36
 distribution, 37
 dynamism, 38
 features, 35–36
 heterogeneity, 37
Enterprise information systems (EISs), 2, 33, 35. See also Information system (IS)
 and company strategy, 38–40
 complexity, 40
 evolution of, 41–42
Enterprise risk management (ERM), 56
Enterprise size factor, 141–142
Entrepreneurial organization, 21
Environmental context, 133, 142
Evaluate, Direct, and Monitor (EDM), 48
Event identification, 56
Event management, 51
Everyday computing, 31
Evolution, 40–41
 agile management paradigm, 18–27
 of EISs, 41–42
 of IS, 31
 of production modes, 15

Firm size, 132
First generation information systems, 29
Flat Business-IT alignment, 4
Flexibility, 1, 10, 42, 59, 60–61
Flexible manufacturing, 10
Fourth industrial revolution. See Industry 4.0
General Electric (GE), 1
GoGrid, 120
Google, 117, 118
Google AppEngine, 120
Guiding principles, 53
Gunasekaran and Yusuf’s process, 72–73
Heterogeneity, 40
Heterogeneity of enterprise application, 37
Hypobook, 145
IBM, 117
Industry 4.0, 13, 41
Information, 57
Information system (IS), 30, 33–35, 68. See also Enterprise Information Systems (EISs)
 complexity factors, 40–41
 definition and objective, 32–33
 enterprise application, 35–36
 evolution, 31
 factors influencing, 71
 integration to improve supply chain agility, 80
 resources, 34
 structure, 33
 systemic view of company and environment, 32, 35
 urbanization of, 59–60
Information system agility (IS agility)
 Atapattu and Sedera’s process, 76–78
 capability, 81
 cloud computing impact on, 146–147
 critic’s, 80–81
 Crocitto and Youssef’s process, 73–74
 discussion, 79–80
Gunasekaran and Yusuf’s process, 72–73
Lin, Chiu, and Tseng’s process, 74–75
Morton, Stacey, and Mohn’s process, 78
Park, El Sawy, and Fiss’s process, 78
Ramesh, Mohan, and Cao’s process, 75–76
Swafford, Ghosh, and Murthy’s process, 75
types of research components, 83
Wu’s process, 78–79
Zhang and Sharifi’s process, 72
Information systems development (ISD), 65
Information Systems’ Audit and Control Association (ISACA), 47
Information technology (IT), 1, 29–31, 117
agility, 1–2, 5–6, 58
agility management, 101
asset management, 100–101
as business agility obstacle, 4–5
contributions and relevance, 6–7
infrastructure design, 66
research design, 6
research objective, 5–6
security management, 101
service management, 100
service management tools, 93
at service of business agility, 5
Information Technology Service Management (ITSM), 6, 93–96
agility in, 96–99
assessment score, 110
audit score, 110, 111
continual IT improvement, 114
Devops ITSM Maturity Model, 107
maturity score, 111
use case, 106–115
Information technology/information system (IT/IS), 60–61
Infrastructure as a Service (IaaS), 120, 149–150
Innovation characteristics, 129–131, 136, 140–141
management, 10
Internal control model, 55
Internal environment, 56
Internet, 30–31
Internet of Things (IoT), 42
Interview design, 144
ISO 2000, 99
ISO 20000, 94
ISO/IEC 15504 PCM, 49
IT Governance Model dimension, 46
extended, 45
ITSM Maturity Assessment Interview, 153–157
Just in time principles (JIT principles), 4, 11, 15–16
“Key informant” approach, 135
Killer application, 29
Knowledge, 22
Knowledge management systems (KMS), 32
Lean, 10, 53, 98
manufacturing, 10–11, 14–17
operations, 25
production, 4
LIBRARY (ITIL), 43–46, 51, 94, 99
ITIL 4 Edition, 98
of ITIL v4 Structure, 52–53
Lin, Chiu, and Tseng’s process, 74–75
Management information system (MIS), 30, 34
Management services, 30
Manufacturing Trilogy of JIT, TQ, and TI, 15–16
Mass production, 10–11
Maturity, 102–103
Maturity Assessment Roadmap, 158
Measurement model, 135
Microsoft, 118
Microsoft Azure, 120
Modern information system efficiency, 33
Monitor, Evaluate, and Assess (MEA), 48
Monitoring, 57
Morton, Stacey, and Mohn’s process, 78

Neighborhood, 60

Objective setting, 56
Open standards-based information systems, 5
Operating system, 34
Opportunity management, 10
Organizational agility (OA), 73 model, 74
Organizational context, 132, 141–142
Organizational strategy, 39
Organizations, 33

Parametric tests, 145
Park, El Sawy, and Fiss’s process, 78
Personnel capability, 83
Piloting system, 34
Plan-do-check-act (PDCA), 99
Platform as a Service (PaaS), 120, 149
PMBOK, 47
Practices, 53
Practitioner principles, 53
Privacy, 130
Process, Organization, Information, Resource, and Environment (POIRE), 76
Process, Technology, Manpower (people), Organization, and Security, 94
Process Capability Model (PCM), 49
Process Maturity Framework (PMF), 95
Process Reference Model (PRM), 48

Production method trends, 13–14
 evolution of production modes, 15
 lean manufacturing, 14–17
 quality management, 17–18
Project management, 54
Proposed ITSM framework, 108
agility management, 103–106
attainment model, 102–103
capabilities, 100–101
continual quality improvement, 110
maturity profile, 99, 102
overview, 99

Quality management, 17–18
Quantitative methodology
cloud usage by deployment model, 148
combined frequency distributions, 149
data collection, 135
discussion and interpretations, 142
environmental context, 142
finding, 136, 140–141
Hypothesis, 145
mean and standard deviation, 400
measurement model, 135
organizational context, 141–142
qualitative study, 142–145
quantitative factors, 137–139
result discussion, 149–150
results, 135–136
results, 148
technology readiness, 141
Questionnaire design, 144–145

Rackspace, 120
Ramesh, Mohan, and Cao’s process, 75–76
Rational Unified Process, 26
Relative advantage, 130
Research model and hypotheses, 128
environmental context, 133
innovation characteristics, 129–131
organization context, 132
technological readiness, 131
Responsible, Accountable, Consulted, and Informed matrix (RACI matrix), 48

Risk assessment, 56
response, 56

Robotics, 42

Salesforce, 120

Sample size, 143

Sarbanes-Oxley (SOX), 45

Scientific sensing, 86

Scrum, 25–26

Security, 130

policy, 89

Security policy for IS (PSIS), 90

Sensing, 85

phase, 88

types, 86–87

Service Desk, 51

Service management dimensions, 52

Service Strategy process, 95

Service value chain (SVC), 52

Service Value System (SVS), 52, 98

Single point of contact (SPOC), 100

Skills

of agility, 25

of IS professionals, 65

Social media sensing, 86–87

Societal sensing, 86

Software as a Service (SaaS), 121, 149

Software Development, 80

Software Engineering Institute (SEI), 49, 54

Spotify, 53

Steel Manufacturing Enterprise (SMC), 95

Strategic agility

executive IT leaders to, 79

ITSM, 93–99, 106–115

proposed ITSM framework, 108–110

Strategic information systems, 31

Strategic sensing, 86–87

Supply chain agility

classical model for supply chain agility, 76

IS integration to improve, 80

Swafford, Ghosh, and Murthy’s process, 75

Taylorism, 11

Team Involvement (TI), 15–16

Technical capability, 81

Technological readiness, 131, 141

Technology, 106

TOE, 121, 124–128

Top management support, 132

Total Quality (TQ), 15–16

Total Quality Management (TQM), 17–18, 22

Toyota Kata, 26–27

Trust, 130

Twenty-first century Enterprise Manufacturing Strategy Report, 20

21st Century Manufacturing Enterprise Strategy, 3–4, 14

Type I error, 143

Type II error, 143

Uncertainty mastering in entrepreneurial organization, 21

Urbanization, 57

of information system, 59–60

metaphor of city, 57–59

US Department of Defense (DoD), 54

Value, 52

Value-added production, 14

Work on agility, 21–25

World Wide Web, 30

Wu’s process, 78–79

Zhang and Sharifi’s process, 72

Zone, 60