INTELLIGENT AGRICULTURE

INTELLIGENT AGRICULTURE

Developing a System for Monitoring and Controlling Production

ΒY

GONZALO MALDONADO-GUZMÁN

Universidad Autónoma de Aguascalientes, Mexico

JOSE ARTURO GARZA-REYES

University of Derby, UK

LIZETH ITZIGUERY SOLANO-ROMO

Universidad Autónoma de Aguascalientes, Mexico

United Kingdom – North America – Japan India – Malaysia – China Emerald Publishing Limited Howard House, Wagon Lane, Bingley BD16 1WA, UK

First edition 2019

Copyright © 2019 Emerald Publishing Limited

Reprints and permissions service

Contact: permissions@emeraldinsight.com

No part of this book may be reproduced, stored in a retrieval system, transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without either the prior written permission of the publisher or a licence permitting restricted copying issued in the UK by The Copyright Licensing Agency and in the USA by The Copyright Clearance Center. Any opinions expressed in the chapters are those of the authors. Whilst Emerald makes every effort to ensure the quality and accuracy of its content, Emerald makes no representation implied or otherwise, as to the chapters' suitability and application and disclaims any warranties, express or implied, to their use.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-1-78973-846-9 (Print) ISBN: 978-1-78973-843-8 (Online) ISBN: 978-1-78973-845-2 (Epub)

ISO 14001

ISOQAR certified Management System. awarded to Emerald for adherence to Environmental standard ISO 14001:2004.

INVESTOR IN PEOPLE

We dedicate this book project to our families. Their love and constant and unconditional support have been an invaluable source of strength and inspiration to complete this project.

> Gonzalo Maldonado-Guzmán Jose Arturo Garza-Reyes Lizeth Itziguery Solano-Romo

CONTENTS

Lis	t of Fig	gures		ix
Lis	t of Ta	bles		xiii
Ab	out the	e Authors	;	xv
Int	roduct	ion		xvii
Ac	knowle	edgement	S	xxiii
1.	Cons	umer Dis	covery	1
	1.1.	Introdu	iction	1
	1.2.	Benchn	nark Analysis Against Other Similar	
		Techno	ologies	4
	1.3.	Techno	ological Roadmap	13
		1.3.1.	Evolution of Cultivation Methods	13
		1.3.2.	New Technologies	19
		1.3.3.	Advantages and Disadvantages in	
			Technological Advances in Agriculture	23
	1.4.	1.4. Intellectual Property Analysis		28
		1.4.1.	What Intellectual Property Rights Are	
			Important to Protect Computer	
			Programs?	30
	1.5.	Value I	Proposal	34
		1.5.1.	Broccoli Producers in Mexico	46
2.	System Architecture		49	
	2.1.	Introdu	action	49
	2.2.	Wireles	ss Sensor Network	52
		2.2.1.	Sensors	55

		2.2.2.	Sink Nodes	65
		2.2.3.	Solar Panels	67
	2.3.	Hardw	are Brain	73
		2.3.1.	Raspberry Pi	74
		2.3.2.	Arduino Mega 2560	76
		2.3.3.	XBee PRO Series 1	77
3.	Softw	are and A	Applications	81
	3.1.	Introdu	iction	81
	3.2.	Softwar	re	84
	3.3.	Softwar	re Design	98
	3.4.	Applica	ation Screenshots	101
4.	Agrot	echnolog	gy Solutions	111
	4.1.	Introdu	iction	111
	4.2.	Aim an	d Objectives	116
	4.3.	Proof-c	of-concept Activities	118
		4.3.1.	Measuring Outside Temperature and	
			Humidity	120
		4.3.2.	Measuring Electrical Conductivity,	
			Moisture, and Temperature of the Soil	127
		4.3.3.	Measuring Global Radiation	136
	4.4.	Demon	stration of Smart Farming Network	141
		4.4.1.	Software Used during Network Testing	143
		4.4.2.	Graphical Representation of Results	
			Collected from Each Sensor Used	
			during the Demonstration	148
		4.4.3.	Software for Setting Real-time Clock	155
	4.5.	Feasibil	lity Analysis including Protocol Updates	
		and Pro	oof to Continue with TRL4 and Beyond	157
Co	nclusio	ns		163
	Exper	imental S	Setup	164
	Result	S		166
Rej	ferences	5		171
Ina	lex			179

LIST OF FIGURES

Chapter 2

Figure 1.	Structure of WSN	54
Figure 2.	Overall System Architecture of WSN	56
Figure 3.	Structure of the Sink Node	66
Figure 4.	Block Diagram of a Sink Node	68
Figure 5.	IEEE 802.15.4 Stack	79

Chapter 3

Figure 6.	Business Use Case	86
Figure 7.	Prediction Crop Use Case	87
Figure 8.	Display Historic Data Use Case	87
Figure 9.	Manage Sensor Use Case	88
Figure 10.	Filling Database Use Case	88
Figure 11.	Employee Administration Use Case	89
Figure 12.	Prediction Menu Sequence	89
Figure 13.	Crop Menu Sequence	90
Figure 14.	Manage Sensor Sequence	91
Figure 15.	Filling Database Sequence	91
Figure 16.	Employee Management Sequence	92
Figure 17.	Entity-Relationship (ER) Database	100

Figure 18.	Administrator/User Access.	101
Figure 19.	Administrator Menu	102
Figure 20.	Predictive Menu	102
Figure 21.	Formula Menu Button	103
Figure 22.	Maximum Rainfall Bar Graph	103
Figure 23.	Rainfall Probability Dispersion Graph for the Next Seven Days	104
Figure 24.	Rainfall Probability Pie Graph for the Next Seven Days	104
Figure 25.	Cosecha (Crop) Menu Option	105
Figure 26.	Sensor Menu Option	105
Figure 27.	Employee Button Menu	106
Figure 28.	"Agregar Personal Nuevo" Button	106
Figure 29.	"Editar Personal" Button	107
Figure 30.	"Eliminar Personal" Button	107
Figure 31.	"Ayuda" Button (Help)	108
Figure 32.	Normal User Menu	109
Chapter 4		
Figure 33.	Smart Farming Zigbee Cluster Tree Network.	118
Figure 34.	Example of Comma-separated Value	119

Figure 35.	Flowchart for HMP-60 Sensor Communication with Router.	122
Figure 36.	Pin Assignments, Configuration Values, and Configuration Bits of HMP-60 Sensor	124
Figure 37.	Main Code of HMP-60 Sensor	125
Figure 38.	Raspberry Pi Software	126
Figure 39.	Raspberry Pi, HMP-60 Received	127

Figure 40.	Graphical Representation of HMP-60 Testing.	128
Figure 41.	Flowchart of Software for 5TE Sensor Probe	130
Figure 42.	Header Files, Configuration Values, and	
	Configuration Bits of 5TE Sensor	131
Figure 43.	Main Code for 5TE Soil Sensor (A)	132
Figure 44.	Main Code for 5TE Soil Sensor (B)	133
Figure 45.	Sensor Measurement of Dry Plant	134
Figure 46.	Sensor Measurement of Watered Plant	135
Figure 47.	Raspberry Pi, 5TE Sensor Data Received	136
Figure 48.	Graphical Representation of 5TE Sensor Data	
	Received	136
Figure 49.	Flowchart of SPI-212 Global Radiation	
	Sensor Arduino Software	138
Figure 50.	Configuration Bits of SPI-212 Sensor Software	100
	on Arduino	139
Figure 51.	Main Code of SPI-212 Sensor Software on Arduino.	139
Figure 52.	Raspberry PI, SPI-212 Sensor Data Received.	140
Figure 53.	Graphic Representation of SPI-212 Sensor	
	Data Received	141
Figure 54.	Small Scale of Network	142
Figure 55.	Example of Simple Bridge Connection	142
Figure 56.	Software on the Coordinator	144
Figure 57.	Software on the Bridges	145
Figure 58.	Data Send by 5TE Soil Sensor	147
Figure 59.	Data Send from SPI-212 Global Radiation	
	Sensor	148
Figure 60.	Data Send from HMP-60 Outdoor	
	Temperature and Humidity Sensor	149

Figure 61.	Data Collected on Coordinator	150
Figure 62.	Graph of Outdoor Temperature vs Time	151
Figure 63.	Graph Representing Outdoor Humidity vs Time	152
Figure 64.	Graph Representing Global Radiation	153
Figure 65.	Graph Representing Soil Dielectric Constant vs Time	154
Figure 66.	Graph Representing Soil Moisture vs Time	154
Figure 67.	Graph Representing Soil Temperature vs Time	155
Figure 68.	Graph Representing Temperature and Humidity vs Time	156
Figure 69.	Software for Setting Time and Data on Real-time Clock	157
Figure 70.	Software for DTH-22 Temperature and Humidity Sensor	158
Figure 71.	Technology Readiness Levels	159
Conclusion	s	
F· 70		145

Smart Farming Wireless Sensor Network	165
Smart Farming Wireless Sensor Network	166
Arduino Mega 2560 Serial Monitor-A	167
Graphical Representation in Raspberry Pi (Python Shell)	168
Sensor Reading from the Sensor Node Plotted Graphically	168
	Smart Farming Wireless Sensor Network.Smart Farming Wireless Sensor NetworkCommunication.Arduino Mega 2560 Serial Monitor-A.Graphical Representation in Raspberry Pi(Python Shell).Sensor Reading from the Sensor Node PlottedGraphically.

LIST OF TABLES

Chapter 1

Table 1.	Companies that Offer Agrotechnology	
	Services.	14
Table 2.	The Most Important Sowings in Mexico	43
Table 3.	Broccoli Producers in Mexico	44

Chapter 2

Table 4.	Technical Specification of Atmospheric	
	Sensors	63
Table 5.	Technical Specification of Soil Sensors	64
Table 6.	Battery Power Consumption Calculation	71
Table 7.	Arduino Runtime from V44 Batteries	72
Table 8.	Technical Specification of Solar Panel and V44 USB Battery	72
Table 9.	Hardware Components	73
Table 10.	Raspberry Pi3 Model B Technical Specification	75
Table 11.	Arduino Mega 2560 Technical Specification.	78
Chapter 3		
Table 12.	Actor Description/Functions	85
Table 13.	Prediction User Case Description	93

Table 14.	Crop User Case Description	94
Table 15.	Manage Sensor User Case Description	95
Table 16.	Filling DB User Case Description	96
Table 17.	Employee Administration User Case Description	97
Chapter 4		
Table 18.	Smart Farming Measurement Frequency	119
Table 19.	Connections between HMP-60 Sensor and	
	Arduino Mega 2560	121
Table 20.	Description of Devices Used.	146

ABOUT THE AUTHORS

Gonzalo Maldonado-Guzmán is a Professor at the Universidad Autónoma de Aguascalientes, Director of the Small and Medium Enterprises Observatory, and Director of the Research and Postgraduate Studies Department. His areas of research include marketing, corporative social responsibility, innovation and knowledge management, and IT and intellectual property in small and

medium size enterprises (SMEs). He has coordinated projects in the Aguascalientes state, Mexico, in innovation and organizational culture in micro and SMEs. He has international projects with Universities of Murcia, Cantabria and Cartagena, in Spain.

Jose Arturo Garza-Reyes is a Professor of Operations Management and Head of the Centre for Supply Chain Improvement at the University of Derby, United Kingdom. He is actively involved in industrial projects where he combines his knowledge, expertise, and industrial experience in operations management to help organi-

zations achieve excellence in their internal functions and

supply chains. He has also led and managed international research projects funded by the European Union, British Academy, British Council, and Mexico's National Council of Science and Technology (CONACYT). As a leading academic, he has published over 100 articles in leading scientific journals, participated in international conferences, and has four books in the areas of operations management and innovation, manufacturing performance measurement, and quality management systems. Professor Garza-Reyes is Associate Editor of the International Journal of Operations and Production Management and Journal of Manufacturing Technology Management as well as the Editor of the International Journal of Supply Chain and Operations Resilience and Editor-in-Chief of the International Journal of Industrial Engineering and Operations Management. The areas of expertise and interest for Professor Garza-Reves include general aspects of operations and manufacturing management, business excellence, quality improvement, and performance measurement.

Lizeth Itziguery Solano-Romo is a Professor at the Universidad Autónoma de Aguascalientes. Her areas of research include information technology management, IT use and adoption, and digital marketing in SMEs. She has participated in the Aguascalientes state, Mexico, in the implementation of the new criminal justice system. She has

international project participation to reduce the IT gap between public and private universities (ALFA-EU) with Universities of Finland, Romania, Brazil, Ecuador, and Colombia.

INTRODUCTION

Agriculture is today one of the fields of knowledge least analyzed and discussed by various researchers, academics, and professionals not only in the field of agriculture but also in different areas of knowledge, although it is an elementary construct for the existence of humanity itself (Ding et al., 2018). Also, currently, the total world population amounts to a little more than seven billion people, and according to the estimates that have been made by the main international organizations, it is expected that by the year 2050, it will generate a substantial population growth of a little more than 2.5 billion people, which will be located primarily in the main urban cities, which will mean that a little more than 90% of the total world population will be concentrated practically in two continents: Asia and Africa (Lloyd, 2017).

However, world food production is totally limited, especially in Africa, and the serious problem of food shortages worldwide has not yet been resolved (Sánchez, 2002). In addition, the Asian continent has serious problems of shortage of drinking water (Pomeranz, 2009), even though 72% of the total surface of the earth is covered by water, and it is estimated that there are a little more than 1.45 billion cubic kilometers of water. Despite the existence of an extensive territorial extension covered by water, a little less than 1% of the total water on the planet is fresh water that is used not only for human consumption but also for agricultural irrigation, which represents a little more than 13 billion hectares; however, only 22% of that land is potentially arable (Lal, 1990).

In this context, there are currently diverse countries that apply traditional agriculture methods that have a high consumption of potable water, are intensive in labor, use fungicides and pesticides that are highly polluting, and are low in productive efficiency (Ding et al., 2018). Therefore, considering the significant increase in the world's population, the severe shortage of drinking water, the existing limitation of resources, and the low level of efficiency of agricultural productivity, among other factors, it is indispensable and urgent that researchers, academics, and professionals from all areas of scientific knowledge guide their studies in the analysis and discussion, not only of the efficiency of a regulated agriculture but also in the development of agrotechnology that propitiates an *Intelligent Agriculture*, because this will allow an adequate utilization of the available resources.

In this sense, even when the systems of Smart Agriculture are too complex, multivariate, and unpredictable (Kamilaris, 2018), it is also possible to incorporate classic technological controls, such as integral processes or differentiated integral processes (Christofides, 2013; Afram and Janabi-Sharifi, 2014), which are not only easy to implement but also to control the movement processes they generate, thereby allowing an adjustment in the control of energy and the time of consumption (Wang, 2001). In addition, the use of intelligent methods such as the control of fuzzy logic, linear regression, and artificial neural networks involves not only deterministic mathematical models but also generalized mathematical models and mixed models, which allow the development of predictive models of agricultural production more accurately (Afram and Janabi-Sharifi, 2014). Likewise, the use of these mathematical methods require a high level of reasoning and understanding and are generally based on the use of historical data on agricultural or agroindustrial production, or on the generation of expert or high-level knowledge (Ding et al., 2018). Therefore, the performance of the mathematical models of control and prediction of agricultural production is superior to that of the classic models of production control, and they are generally simpler to implement when using intelligent algorithms through computers. Thus, the mathematical models of production control and prediction have a high reliability and accuracy of the levels of agricultural and agroindustrial production, in addition to significantly reducing the use of drinking water, electricity, and emission of CO_2 (Ding et al., 2018).

Similarly, control and prediction models of agricultural or agroindustrial production generally refer to the use of advanced algorithms through computers that are used to explain and develop predictive models of future growth that plants will have, or the growth that is estimated to have food production (Qin and Badgwell, 2003). Therefore, this type of control and prediction models work with a series of inputs that are controlled by the computers during a certain period of time, and they take the data usually from a selected sample of a dataset that reveals agricultural or agroindustrial production; however, only some of these models are implemented in the production prediction process (Bumroongsri and Kheawhom, 2014) because they generate the smallest possible error in the prediction of food production.

In addition, the use of advanced algorithms in the models of control and prediction of agricultural production is often done through three steps: prediction models, optimization in its implementation, and adjustment in the feedback (Zhang, 2017), with these three steps being equally important for the development of agricultural control and prediction models. Production control and prediction models were developed at the beginning of the 1960s, and these types of models were used almost exclusively in the process of predicting industrial production (Garriga and Soroush, 2010); however, its use has expanded to all areas of scientific knowledge, and its use has been considered important and paramount in all production prediction processes, including, of course, agricultural and agroindustrial production.

Additionally, most of the production control and prediction models require a series of constraints, predictive information, and linear and nonlinear dynamics for their application (Ding et al., 2018). Linear models of control and production prediction are usually used to solve quadratic problems of online programming, and nonlinear production control and prediction models are generally used to control systems with nonlinear dynamics, for which undoubtedly greater mathematical calculations than linear models (Vukov, 2015) are required. In addition, matrices of control dynamics and controlled algorithm models, which are commonly based on linear quadratic mathematical models that are relatively easy to use, have recently been incorporated into the theory of production control and prediction models.

Within the models of controlled algorithms are the models of internal control, which are widely used by researchers, academics, and professionals in the field of computer science and mathematics, and which can be defined as a simple entry and/ or exit of information through a discrete time series system (García and Morari, 1982). Therefore, it is possible to affirm that the internal control models are nothing more than a combination of a dynamic control matrix and a model of control algorithms, but theoretically it is better; and the internal control model is more complete than the two previous models, and usually the internal control model tends to solve the problems of control and production prediction more robustly and with a much smaller error, which makes the model more efficient and effective.

Therefore, given that industrial processes are increasingly complex, involve an increasing number of interfaces, and are strongly non-linear, it is essential that new production control and prediction models are adapted and implemented in the companies of all sizes and sectors, as is the case of internal control models, which are more robust and have the minimum possible error in their application (Ding et al., 2018). However, the time to perform the calculations for the internal control models should be relatively long and totally efficient, to aspire to obtain robust results and with a minimum error, for which researchers and academics have considered necessary that this type of models be stabilized (Ding et al., 2018), that is, that they adapt to the production processes of the companies where they will be applied (Zhang, 2017).

ACKNOWLEDGEMENTS

We thank the British Council for having financially funded the international research project entitled *Developing Food Security and Water Conservation for Economic Growth in Mexico – A Smart Monitoring and Control System (SMCS) Agro-Technology for Sustainable and Efficient Farming Operations (No. 275317449)*, from which this work is derived. The project was funded through the Newton Fund and the Institutional Links scheme of the British Council, and it was carried out through an international collaboration between the University of Derby (UK) and the Universidad Autónoma de Aguascalientes (Mexico).

We would like to thank our institutions, the University of Derby (UK) and the Universidad Autónoma de Aguascalientes (Mexico), for their unconditional support to complete the research project and production of this book. Also, we would like to thank our publisher "Emerald Publishing Limited" and its editorial team for assisting us with this publication. Finally, we would like to express our deepest gratitude to our following colleagues who also made a significant contribution to the research project and this work:

• Dr Jose Manuel Andrade, Senior Lecturer in Electrical And Electronic Engineering, University of Derby, UK.

- Gisha Gangadharan, Research Assistant Engineer in Electrical and Electronic Engineering University of Derby, UK.
- Christopher Horry, Student Research Assistant in Electrical and Electronic Engineering, University of Derby, UK.
- Ruben Michael Rodríguez-González, Student Research Assistant in MBA, Universidad Autónoma de Aguascalientes, Mexico.