## Index

Absorption costing, 9, 67  
Accounting cost, 72  
Acquisition, 20, 43–44, 48, 123  
Activity-based costing (ABC), 11, 49, 67, 92  
Adjustment price (AP), 34–35  
Administrative costs, 53, 87  
Algorithm-based predictive analytics, 125  
Allocating costs, 45  
Annual production volume (APV), 85  
Assemble-to-order production (ATO production), 109  
Assembly cost, 62  
estimation, 60  
Assembly labor cost, 56  
Assembly lines, 83  
Assigning costs, 45  
Attributing costs, 45  
Automated guided vehicle systems (AGVS), 108  
Automated guided vehicles (AGVs), 108  
Automated systems, 25, 124  
Automatic control, 117  
loop, 117  
system limitations, 1, 90  
Automatic guided vehicles (AGVs), 128, 133  
Automation, 117  
concession price, 34  
energy pricing model, 30–32  
life cycle economic aspects, 17–19  
resources, 17–20  
supply complexity, 12–13  
Automobile firm, 5  
Autonomic computing, 43–45  
Autonomous cognition, 107–108  
Autonomous devices, 36  
Autonomous manufacturing system (AMS), 1–3, 90  
AB–application area from costing method, 70  
ABC, 67  
AC–level of integration between costing methods and production, 71  
AD–advantages resulting from application of costing methods, 71  
AE–difficulties in deployment, 73  
cost engineering, 72  
cost minimization/profit maximization, 72–81  
cost of quality, 81–87  
cost-minimization problem, 65  
indirect–overhead costs, 66  
keywords and combinations, 69  
price optimization in, 117–134  
pricing models in, 107–114  
Autonomous production, 107  
Autonomous system, 43  
CoQ application in, 83–87  
Autonomy criteria, 89  
Average costs, 39, 77–79  
average quoted cost of enterprise, 39  
functions, 77  
Bandwagon effect, 27  
Basic price (BP), 28, 34–35  
Big data, 122, 125  
Big Data Analytics, 109  
Biology-inspired technologies, 90  
Business  
environment, 65  
events, 10  
management cost accounting methods, 17  
model, 44
California electricity crisis (2001), 37
Case-based reasoning (CBR), 32
Cash inflow parameters, 33
Cash outflow parameters, 33
Causal loop diagram for concession pricing of automation projects, 35
Circular cause and effect relationships, 34
Class of outputs, 45
Clothing, 29
Cloud computing, 121, 125
Cobb–Douglas production function, 75
Cognitive agent-based manufacturing system, 91–92
Communicating instructions to workers, 120
Compensated shadow cost of each unit, 40–41
Competition-based pricing strategies, 7
Computer numerical control (CNC), 128, 133
Computer simulation, 133–134
Computer system, 119
autonomic, 45
complex, 43, 45
functions for automated manufacturing, 120
integrated, 12
Computer-controlled machines, 133
Computer-software cost, 129–130
Computing, high-performance, 121
Concession pricing model, 27–28, 32
casual loop diagram, 35
comprehensive structure in automation projects, 32
parameters and risk factors, 33–36
parameters of automation projects, 34
Consumers, 27–28
Control
computer numerical, 128, 133
define measure analyze improve control approach, 82
direct numerical, 128, 133
material handling system, 120
production process, 108
quality, 120
statistical process, 108–109
Control charts (CC), 130
Conventional manufacturing cost, 126
systems, 128
Conversion cost, 52
Cooperative infrastructure, 108
Cordless technology, 2
Cost accounting, 45
documenting cost accounting policies, 46–47
policies, 45
Cost and price in autonomous manufacturing
AMS, 90
decomposition of profit, 94
electricity cost function, 99–100
equation, 103–105
labor cost function, 101
manufacturing profit maximization, 102
MES, 91
model development, 93
production function, 97–99
reconfiguration and autonomy, 89
time-varying pricing, 94–97
Cost breakdown structure (CBS), 50
Cost Metric Algorithm Interface (CMAI), 14, 16–17
Cost minimization/profit maximization, 72
application study, 75–77
combination of robot and resources for cost minimization, 74
cost functions, 77–81
long-run cost minimization, 75
short-run cost minimization, 74–75, 76
Cost of quality (CoQ), 81
application in autonomous system, 83–87
Index 159

Lundvall–Juran curve depicting relationship, 82
Cost parameters and costing models application study, 55–62
autonomic computing, 44–45
cost accounting concept, 45–47
cost object, 47–51
costing model development, 53–54
manufacturing companies, 43
manufacturing costs, 51–53
PSS, 44
TLC, 43–44, 63
Cost-based pricing (see Revenue-oriented pricing)
Cost-inducing factor, 19
Cost-management systems, 65
Cost-minimization problem, 65
Cost-plus method, 36–37
Cost(ing) (see also Labor), 3–7
accounting policies, 46–47
in automation, 9
automation resources, 17–20
data integration model, 20–21
of energy, 60
engineering, 72
estimation, 127
of facilities, 60
functions, 77–81
levelized, 3
of manufacturer, 20
minimizing input choices, 72
model application, 134
model development, 12–17, 53–54
model parameters, 56
of molded parts, 56
objects, 45, 47–51
opportunity, 4–6
related works, 10–12
of sheet metal parts, 59
switch of responsibilities, 15
system for advanced manufacturing systems, 126–127
of testing equipment \(C_{equipment}\), 85
of testing sample \(C_{testing}\), 85
Critical-peak pricing (CPP), 95
Current demand, 110–111
Custom products, higher-end, 55
Customers
  core business processes, 44
customer-oriented pricing, 26, 125
Cyber physical systems, 120
Data
  analytics, 121
data-driven decision-making, 120–121
integration model, 20–21
  in smart manufacturing, 121–122
Decision rules, 119
Define measure analyze improve control approach (DMAIC approach), 82
Demand, 110, 112
Deployment agent, 14
Depreciation cost, 130
Deproduction, 19
Deregulated electricity markets, 36
Design for manufacture and assembly (DFMA), 108–109
Design structure matrix (DSM), 82
Device’s capacity cost, 40
Digital simulation models, 109
Direct costing, 9, 45
Direct labor, 127–128
cost, 51–52
Direct materials cost, 51
Direct numerical control (DNC), 128, 133
“Direct variable” cost, 49
“Disposal/deproduction”, 18
Double stage acceptance sampling strategy, 84–86
Download work part programs, 120
Driving force, 26
Dynamic pricing, 26, 112, 124
Eco-labeling, 28
Economic cost, 72
Economic quality level (EQL), 81–82
Efficient price, 26, 124
Electricity, 93–94
  cost function, 99–100
  markets, 36
  payment, 29
  regulated and deregulated electricity markets, 36
Electricity value equivalent pricing method (EVE pricing method), 37
Electronics, 29
Energy
  consumption of machine tools, 2–3
  consumption scheduling vector, 30–32
  cost of, 60
  pricing mechanisms, 38
Engineer-to-order production (ETO production), 109–110
Engineering economic methods, 3
Entity relationship model, 12
Equivalent marginal cost pricing model (EMCP model), 39
  in automation pricing, 40
Expenditure minimization, 65
Expenses, 4–5, 11, 45, 52, 63, 87
External reporting, 9

Facility cost, 56
Factory automation, strategic decision-making about, 134
Failure cost, 130–131
Failure diagnosis, 120
Failure modes and effects analysis (FMEA), 108–109
Faux wood blinds, 2
Feasible scheduling set, 31
Final price (FP), 28
  of device, 41
Fixed cost ($C_{\text{fixed}}$), 9, 85
Flexibility cost items, 132
Floor-space cost, 129
Focal company, 11
Friction, 2
Fringes, 127
Genopersistation, 48–49

Gucci, 29
Hedonic effect, 27
Heterarchical agent-based model, 14
High-cost manufacturing environment, 62
Holons, 91
Homogeneity, 78
Homogeneous cost pools, 45
IBM, 44–45
IDEAS architecture, 14
Idle cost, 132
Image-based pricing (see Value-based pricing)
Inclining block rate (IBR), 29
Independent automation enterprises, 37
Indirect costs, 45
Indirect labor, 52, 127–128
Indirect–overhead costs, 66
Individual product sustaining service, 50–51
Industrial engineering methods, 108–109
Industrial process automation, 118
Infineon Technologies, 118
Information leakage vulnerabilities, 121
Information systems (IS), 10
  costs and benefits, 21
Input–Output Analysis (IOA), 54
Input–output production–inventory system, 54
Inspection cost ($C_{\text{inspection}}$), 85
Insurance, 9, 52, 128–129
Integrated manufacturing performance measure (IMPM), 134
Integrated system and cost modeling, 54
Intelligent iron ore mine, 108
Intelligent machining systems, 1
Intelligent manufacturing systems (IMS), 89
Intensive socio-technical system, 44
Internal reporting, 9
Internet of things, 121
Inventory cost, 132–133
Investments, 37, 45

Job design, 108–109

Labor (see also Cost(ing))
- assembly labor cost, 56
cost, 101, 127–128
direct, 127–128
indirect, 52, 127–128
operator labor cost, 56
productivity, 119
supervisory labor cost, 56
time-varying labor cost function, 101

Lean
- accounting, 2, 67–68
cost, 67–68
concept, 2
manufacturing, 2, 67–68, 92
production processes, 69

Levelized cost, 3
Load duration curves (LDCs), 37–38
Local area network (LAN), 29
Long-run cost minimization, 75
Long-run marginal cost (LRMC), 37
Long-term service agreements, 44
Louis Vuitton, 29
Low Level Control Integration Library Interface, 14
Low-cost manufacturing environment, 62

Lower specification limits (LSL), 130
Luxurification in society, 28–29
Luxury brands, 29

Machine
- analytics, 125–126
cost, 128–129
tools, 10

Machining processes, 3, 10
Make-to-stock production (MTS production), 109
Manned cells, 127
Manual products, 55
Manufacturers, 26
- production system, 56
Manufacturing
- costs, 3, 51–53
- firms, 122
- organizations, 9–10
- overhead cost, 52
- pricing, 123–127
- profit maximization, 102
- strategy, 126
- systems, 1, 10, 18, 45, 90–91, 119
technology and processes, 121–122
Manufacturing Cost Levelization Model, 3
Manufacturing execution system (MES), 91
Marginal cost functions 77
pricing method, 36–37
Market prices, 6
Market-based incentives, 29
Marketers, 26
Marketing costs, 53
mix, 6
Material cost, 128
in smart manufacturing, 121–122
Mathematical model, 28
Minimum attractive rate of return (MARR), 34
Minimum cost curve (MCC), 39
Modern machine tools, 10
Mold cost estimation, 58
Moment of truth”, 125
Monitor safety, 120
Motorized products, 55
MSC’s fishery certification programmer, 29
Multifunctional worker, 127
Net present value (NPV), 3
of automation project, 34
Network and relational data structures, 12
“NK” model of complex system, 12
Nonmanufacturing costs, 52

Objectives of pricing, 25
“One size fits all” system setup, 118
Operating characteristic (OC), 83
Operating cost for maintenance and repair, 20
Operation management, 120
Operations-oriented pricing, 26, 124
Operator labor cost, 56
Opportunity costs, 4–6, 126
Optimal choice of energy consumption scheduling vector, 32
Optimal manufacturing systems design, 3
Optimal prices, 37
Organizational information processing theory, 21
Original equipment manufacturer (OEM), 44
Overall cost model, 56
Overall pricing strategy, 124
Overtime pay, 97

Parametric values in cost model, 133–134
Partial elasticity of substitution, 80
“Parvenus”, 29
Path Computation Algorithm Interface (PCAI), 14
Payback period, 119
Payoff, 4
Perfectionism effect, 27
Physical production in manufacturing industry, 108
Plastic manufacturers, 51
Plus cost of scrapping lot ($C_{\text{scrap}}$), 85
Policy analysts, 4
“Poseurs”, 29
Predictive engineering, 121–122
Premium pricing, 28
Prestige brands, 27
Prestige goods, 29
Prestige pricing (see Premium pricing)

Prestige-Seeking Consumer Behaviors, 27
Prevention cost, 130
Prevention-appraisal-failure model (P-A-F model), 81
Price, product, promotion, and place (Four Ps), 123
Price adjustment, 28
coefficient of reference cases, 36
Price optimization
application of cost model, 134
autonomous manufacturing systems, 117–118
computer system functions for automated manufacturing, 120
industrial automation, 118–119
pricing in manufacturing, 123–127
RWSC estimation, 127–134
smart manufacturing, 121–123
Price/pricing (see also Cost(ing)), 3–7, 25, 123–124
approaches to pricing strategy, 124–125
in automation, 25
autonomous cognition, 107–108
cost system for advanced manufacturing systems, 126–127
decisions, 123
decisions, 7
ETO, 109–110
industrial engineering methods, 108–109
literature, 30
in manufacturing, 123
model development, 29–41
model development and analysis, 110–114
objectives, 25–29
premium, 29
profitable selling, 125–126
strategies, 7
Price–demand curve, 110–112
Process capability (PC), 130
Process-based cost model, 83
Product agent (PA), 14–16
“Product and support” business model, 44
Product costing systems, 66–67
Product Life Cycle, 18
  course of cost and benefit in, 19
  maximum benefit, 19–20
  shares of costs, revenue, and benefits, 20
Product pricing, 36
Product service system (PSS), 44
Production/productivity, 18–19
  cost, 126
  function, 97–99
  paradox, 134
  technologies, 108
Profit, 107
  maximization, 93
  profit-oriented pricing (see Revenue-oriented pricing)
Profitable selling, 125–126
Project risk similarity (PRS), 35
Property taxes, 9
Provenance, 28
Public Finance Act (1989), 46
Public–private partnership (PPP), 28

Qualitative multiple case-based research method, 122
Quality and flexibility costs, 126
Quality cost items, 130
Quantum computing, 121

R&D process, 4
Real-time pricing (RTP), 29
Reconfiguration criteria, 89
Recycling costs, 20
Reference automation agent architecture model, 14–17
Regulated electricity markets, 36
Relationship-oriented pricing, 27, 125
Relatively ill-structured costs (RISC), 126–127, 130–134
Relatively well-structured costs (RWSC) (see also Cost(ing)), 126
computer-software cost, 129–130
depreciation cost, 130
estimation, 127
floor-space cost, 129
indirect labor, 127–128
machine cost, 128–129
tool cost, 129
Representative automation pricing methods, 36–41
Residual demand, 110–114
Resource sharing and networking, 121–122
Revenue-oriented pricing, 7, 26, 124
RFID tags, 125
Robots, 128, 133
Routing Entity Agent (REA), 14–16
Salaries, 127
SCADA control systems, 118
Scheduling
  approach, 121
  horizon, 30
  of products, parts, assemblies, or subassemblies, 11
  schedule production, 120
Seafood eco-label reward, 29
Self-adaptation to disturbances, 89
Self-managed operations, 43
Selling costs, 53
Semiconductor companies, 118–119
Service instance, 49
Service-oriented solutions, 121
Set-up cost, 132
Shop floor resources, 11
Short-run cost minimization, 74–75
  with one fixed input, 76
Short-run marginal cost (SRMC), 37
Short-term supply chain scheduling, 121
Single CNC machine tools, 17–18
Skill Management Entity Agent (SMEA), 14–16
Smart manufacturing, 120–123
SMEs, 122
Snob effect, 27
Socially oriented pricing, 27, 125
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standalone instance</td>
<td>47, 50</td>
</tr>
<tr>
<td>Standard linear price–demand curve</td>
<td>110</td>
</tr>
<tr>
<td>State Sector Act (1988)</td>
<td>46</td>
</tr>
<tr>
<td>Statistical process control (SPC)</td>
<td>108–109</td>
</tr>
<tr>
<td>Strategic decision-making about factory automation</td>
<td>134</td>
</tr>
<tr>
<td>Strategic pricing</td>
<td>6</td>
</tr>
<tr>
<td>Supervisory labor cost</td>
<td>56</td>
</tr>
<tr>
<td>Supply chain</td>
<td>26, 54, 56</td>
</tr>
<tr>
<td>management</td>
<td>12, 121</td>
</tr>
<tr>
<td>scheduling</td>
<td>121</td>
</tr>
<tr>
<td>Sustainability</td>
<td>121–122</td>
</tr>
<tr>
<td>System dynamics model (SD model)</td>
<td>28, 33</td>
</tr>
<tr>
<td>Task analysis</td>
<td>108–109</td>
</tr>
<tr>
<td>Taxes</td>
<td>3</td>
</tr>
<tr>
<td>Taylor’s equation</td>
<td>129</td>
</tr>
<tr>
<td>Theoretical model</td>
<td>7</td>
</tr>
<tr>
<td>Through-life costing (TLC)</td>
<td>43–44, 63</td>
</tr>
<tr>
<td>Time interval</td>
<td>49</td>
</tr>
<tr>
<td>Time-driven activity-based costing (TDABC)</td>
<td>67, 92</td>
</tr>
<tr>
<td>Time-of-use (TOU)</td>
<td>94–96</td>
</tr>
<tr>
<td>Time-varying</td>
<td></td>
</tr>
<tr>
<td>labor cost function</td>
<td>101</td>
</tr>
<tr>
<td>pricing</td>
<td>94–97</td>
</tr>
<tr>
<td>Tool cost</td>
<td>129</td>
</tr>
<tr>
<td>Tooling and supervisor costs</td>
<td>59</td>
</tr>
<tr>
<td>Total capacity cost of enterprise</td>
<td>40</td>
</tr>
<tr>
<td>Total cost (TC)</td>
<td>93–94</td>
</tr>
<tr>
<td>functions</td>
<td>77</td>
</tr>
<tr>
<td>Total revenue (TR)</td>
<td>93</td>
</tr>
<tr>
<td>Traditional accounting methods</td>
<td>17</td>
</tr>
<tr>
<td>Traditional cost accounting</td>
<td>119</td>
</tr>
<tr>
<td>Traditional costing system</td>
<td>2, 67</td>
</tr>
<tr>
<td>Traditional manufacturing systems</td>
<td>90</td>
</tr>
<tr>
<td>Transport element</td>
<td>16–17</td>
</tr>
<tr>
<td>Transport Element Agent</td>
<td>14, 16–17</td>
</tr>
<tr>
<td>Transport Entity Agent (TEA)</td>
<td>14–16</td>
</tr>
<tr>
<td>Transportable systems</td>
<td>20</td>
</tr>
<tr>
<td>U.S. Federal Energy Regulatory Commission</td>
<td>94</td>
</tr>
<tr>
<td>Uniform quality standards</td>
<td>55</td>
</tr>
<tr>
<td>Unmanned air vehicle program (UAV program)</td>
<td>47–48</td>
</tr>
<tr>
<td>Unreliable production</td>
<td>107</td>
</tr>
<tr>
<td>Upper specification limits (USL)</td>
<td>130</td>
</tr>
<tr>
<td>Value stream costing (VSC)</td>
<td>67–68, 92–93</td>
</tr>
<tr>
<td>Value-based pricing</td>
<td>7, 26, 125</td>
</tr>
<tr>
<td>Variable cost (VC)</td>
<td>9, 85, 93</td>
</tr>
<tr>
<td>Variance analysis</td>
<td>9</td>
</tr>
<tr>
<td>Veblen effect</td>
<td>27</td>
</tr>
<tr>
<td>Vehicle–infrastructure integration</td>
<td>108</td>
</tr>
<tr>
<td>Vensim PLE32 software</td>
<td>33</td>
</tr>
<tr>
<td>Wages</td>
<td>127</td>
</tr>
<tr>
<td>Waiting cost</td>
<td>132</td>
</tr>
<tr>
<td>Waiting time</td>
<td>29</td>
</tr>
<tr>
<td>Window covering products</td>
<td>55</td>
</tr>
<tr>
<td>Work-in-process inventory (WIP inventory)</td>
<td>129</td>
</tr>
<tr>
<td>Yield management (see Dynamic pricing)</td>
<td></td>
</tr>
</tbody>
</table>