American options, 178–182
 for pricing, 255–256
American/European vanilla options, 120
Analytic option pricing formulae, 105–113
Annualized standard deviation, 63
APX power exchange (APX), 192, 199
Arithmetic progressions, 293
Arrow–Debreu prices, 143

Basic Linear Algebra Subprograms (BLAS), 245
Basket options. See Multi-asset options
Battery storage, 214–217
BEGKR method, 169
Benchmark portfolio, 234–244
Binomial distribution, 284–289
 for large n and low probability p, 285–286
 for large number, 286–288
 normalized binomial variates, 288–289
Binomial expansion, 294–295
Binomial lattice, 115
 techniques, 115
Binomial model, 171
Bivariate cumulative normal, 174
Black–Scholes equation, 146, 259
Black–Scholes model, 47
 formula, 52
 Girsanov’s theorem, 53
 Greeks, 60–61, 62
 historical and implied volatility, 61–67
 inclusion of continuous dividends, 57–60
 Microsoft Excel, 67–70
 multi-asset option pricing partial
differential equation, 50–52
 option pricing partial differential
equation, 47–50
 probability density function, 54
 univariate cumulative normal function, 55
Black–Scholes pricing framework, 163

Brownian Bridge, 15–17
Brownian motion, 1, 3
 model of asset price movements, 5
 with one source of randomness, 11–12
 properties, 3–5

C++, 1
 classes, 245
 option pricing, 254–256
 random number class, 250–254
 risk percentiles, 256–258
 vector class, 245–250
Call options on maximum and minimum
 of two assets, 174
Central Limit Theorem, 265–266
Confidence Intervals, 267–268
Continuous dividends, 46–47
 inclusion, 57–60
Contract risk distributions, 198–200
Contract valuation, 206–209
Correlation coefficient, 164
Correlation matrix, 9, 83, 223–224, 272
Covariance, 270–272
 covariance of n variables, 271–272
 three variables, 271
 two variables, 270–271
Cox, Ross, and Rubinstein binomial
 lattice (CRR lattice), 118, 169
Crank–Nicolson method, 150
Cumulative distribution function (CDF),
 22, 39, 68, 193, 282, 289
Cumulative normal distribution function,
 292–293

Delta function, 60, 126–127, 261
Demand side response (DSR), 2
Dependent variables, 165
Doubly truncated Weibull distribution,
 98–102, 102–203
Downward branching node, 139,
 142–143, 145
Dual cash-out price method, 190–191
Early exercise, 155–159
Efficient frontier, 225, 226
with no transaction costs, 225–233
with transaction costs and benchmark portfolio, 234–244
Empirical CDFs, 193, 289–290
European options, 173
call options on maximum and minimum of two assets, 174
for pricing, 254–255
put options on maximum of two assets, 175–178
put options on minimum of two assets, 174–175
Excel Visual Basic code, 223
Exponential distribution, 34, 281–282
Fast response generation units, 206, 210
Financial risk distributions, 189
Finite difference
approximation, 146–150
lattices, 169
method, 160–162
Forward price, 76–77
Four-state Markov Chain, 195
Fubini’s theorem, 22–23, 297
Fully implicit method, 149–150
Gamma function, 60, 95, 127, 260–261
Gaussian Copula, 194
Gaussian distribution, 7, 16
GBP/EUR exchange rate, 34
GBP/USD exchange rate, 34
Geometric Brownian motion (GBM), 1, 5, 47, 115
Geometric progressions, 293
Girsanov’s theorem, 8
Greeks, 60–61, 125–129
Delta, 261
European call, 62
European put, 62
Gamma, 260–261
Rho, 263
Theta, 262–263
for Vanilla European options, 259–260
Vega, 263–264
Grid methods for Vanilla options, 145
log-transformed grids, 159–162
standard grids, 146–159
stochastic process, 145
Half hourly marginal system price benefit, 194
Half hourly power price, 42–44
simulation, 36
Historic portfolio volume forecast error distribution, 192–193
Imbalance risk, 189
benefit of including customer into portfolio, 194–195
contract risk distributions, 198–200
contracted energy, 190–191
MIP, 195–197
risk distribution, 192–193
SBP and SSP, 197–198
single cash-out price, 191–192
stand-alone cost, 193–194
Independent, identically distributed random variables (IID random variables), 265, 269–270, 273
IID lognormal distribution, 102
Intraday generation, 217–221
Intraday power storage and demand optionality, 210
battery storage, 214–217
import site with storage and solar PV, 212–213
storage connected to grid with/without solar PV generation, 211–212
swing contract, 213–214
Ito product rule, 11
Brownian Motion with one source of randomness, 11–12
in n dimensions, 14–15
Ito quotient rule, 12–14
Ito’s formula. See Ito’s lemma
Ito’s isometry–correlated processes, 25–27
Ito’s isometry–single process, 23–25
Ito’s lemma, 5–8, 297
for multi-asset geometric Brownian motion, 9–11
Johnson binomial lattice, 133–137
Johnson distribution, 84
 option pricing formula, 84–88
 parameter estimation, 89–93
Jump diffusion process, 103

Kalman filter, 82

Lattice methods, 145
 constructing and using standard
 binomial lattice, 121–129
 Johnson binomial lattice, 133–137
 log transformed binomial lattice,
 129–133
 standard binomial lattice, 115–121
 trinomial lattice, 137–145
 for Vanilla options, 115
Least squares Monte Carlo optimization,
 211–212, 213
Lithium ion batteries, 210
Load management, 35
Log transformed binomial lattice,
 129–133
Log-transformed grids, 159
 derivation of equation, 159–160
 finite difference method, 160–162
 see also Standard grids
Lognormal distribution, 117, 280–281
Longstaff Schwartz regression
 approach, 2
 see also Least squares Monte Carlo
 optimization
Marginal power price, 33
Market index price (MIP), 190, 195–197
Markov process, 3
Markowitz efficient frontier, 225
Markowitz mean–variance portfolio
 selection problem, 223
Markowitz portfolio optimization, 1
Martingale measure, pricing derivatives
 using, 45–46
Martingale process, 3
Mathematical reference
 arithmetic and geometric progressions,
 293
 cumulative normal distribution
 function, 292–293
 series expansions, 294–295
 standard integrals, 291–292
 Mersenne Twister uniform random
 number generator, 250, 252
 Merton jump diffusion model, 102, 255
 analytic option pricing formulae,
 105–113
 jump diffusion process, 103
 Monte Carlo simulation, 104–105
 parameter estimation, 113–114
 Microsoft Excel, 67–70
 Microsoft Excel VBA code, 1, 90–93,
 223, 230, 240–242
 Mixed integer linear programming
 (MILP), 211
Moment generating functions, 272–273
Monte Carlo
 fundamental power stack model, 2
 lattice approach, 165
 methods, 163
 simulation, 33, 104–105, 192, 250
Multi-asset
 Black–Scholes equation, 163–164
 derivative, 50
 geometric Brownian motion, 1, 9–11
 Multi-asset options, 165
 multidimensional lattice methods, 163,
 169–171
 multidimensional Monte Carlo
 methods, 165–169
 pricing partial differential equation,
 50–52
 three asset options, 183–187
 two asset options, 171–182
 see also Single asset American style
 options; Single asset European
 options
Multifactor forward curve model, 82–83

N2EX, 192
National Grid, 210
Newton’s method, 64, 66
Normal (Gaussian) distribution, 277–280
Normal cumulative distribution, 67
Normalized binomial variates, 133,
 288–289
NORMDIST function, 67
Numeraires, 45
Object-based programming languages, 248
Objective Function, 1, 230, 233, 244
One factor forward curve model, 72, 137
exponential factor, 72
forward price and spot price, 76–77
option pricing formula, 77–80
spot price process, 73–76
One-factor spot model, 70–72
Option payoff at terminal nodes, 123–124
Option pricing, 254–256
American options, 255–256
European options, 254–255
formula, 77–80, 84–88
partial differential equation, 47–50
Option values computation at given time
instant, 151–155
Ornstein–Uhlenbeck process, 1, 17
mean, 18
variance, 19–21
Payoff, 45, 46, 54, 123–124, 172, 213
Poisson distribution, 282–283
Poisson process, 21–22, 34, 102
Poisson random number generator
functions, 253
Portfolio optimization, 224
covariance matrix, 223–224
efficient frontier with no transaction
costs, 225–233
efficient frontier with transaction costs
and benchmark portfolio, 234–244
optimum asset allocation, 224–225
Portfolio volume forecast error
distributions, 194
Power contracts
imbalance risk, 189–200
intraday generation, 217–221
intraday power storage and demand
optionality, 210–217
wind contracts, 200–209
Power price model
modeling wind and solar generation,
36–42
power stack model, 33–36
simulated half hourly power price,
42–44
Power spot price, stochastic process for,
205–206
Power stack model, 33–36
Price European exchange options, 171
Probability
density function, 23, 54, 58, 275, 277
distribution, 15
measure, 53
Problems, 27–32
answers to, 297–313
Put options
on maximum of two assets, 175–178
on minimum of two assets, 174–175
Put–call parity, 46–47
Radon–Nikodym derivative, 8
Random number class, 250–254
Random walk, 3
Reasonable approximation, 119
Relative contract maturities, 83
Renewable energy, 2
generators, 189
Risk percentiles, 256–258
Simulation, 204–205
Monte Carlo simulation, 33, 104–105,
192, 250
Single asset American style options
Grid methods for Vanilla options, 145
lattice methods for Vanilla options,
115–145
see also Multi-asset options
Single asset European options
Johnson distribution, 84–93
Merton jump diffusion model,
102–114
multifactor forward curve model,
82–83
one factor forward curve model, 72–80
one-factor spot model, 70–72
pricing derivatives using martingale
measure, 45–46
put–call parity, 46–47
two-factor spot model, 81–82
Vanilla options and Black–Scholes
model, 47–70
Weibull distribution, 93–102
see also Multi-asset options
Single cash-out price method, 190–192
Single-factor forward curve model, 82
Solar generation, 35, 36
 actual half hourly UK summer solar PV generation, 41
 actual half hourly UK winter solar PV generation, 42
 current and previous daily average UK solar PV generation, 38
 current and previous half hour UK solar PV generation, 38
 simulated half hourly UK summer solar PV generation, 41
 simulated half hourly UK winter solar PV generation, 42
Solar PV generation
 import site with storage and, 212–213
 storage connected to grid with/without, 211–212
Spot price process, 73–77
Standard Binomial lattice, 115
 asset values to lattice nodes, 122–123
 computing Greeks, 125–129
 constructing and using, 121
 iterate backwards through lattice, 124–125
 lognormal mean, 116
 lognormal variance, 116–121
 option payoff at terminal nodes, 123–124
 values of constants by lattice, 122
Standard Brownian motion, 4
Standard grids, 146
 backwards iteration and early exercise, 155–159
 boundary conditions, 150–151
 computation of option values at given time instant, 151–155
 finite difference approximation, 146–150
 see also Log-transformed grids
Standard integrals, 291–292
Standard normal distribution, 4
Standard statistical results, 265–273
 Central Limit Theorem, 265–266
 Confidence Intervals, 267–268
 covariance, 270–272
 covariance matrix, 272
law of large numbers, 265
 moment generating functions, 272–273
 variance, 268–270
Standard Template Library (STL), 245
Standard Weibull distribution, 93–98
Statistical distribution functions
 Binomial distribution, 284–289
 empirical CDF, 289–290
 exponential distribution, 281–282
 lognormal distribution, 280–281
 normal (Gaussian) distribution, 277–280
 Poisson distribution, 282–283
 uniform distribution, 275–277
Stochastic integral expectation, 27
Stochastic integrals, 22
 expectation of stochastic integral, 27
 Fubini’s theorem, 22–23
 Ito’s isometry–correlated processes, 25–27
 Ito’s isometry–single process, 23–25
Stochastic processes, 1, 8, 145
 for power spot price, 205–206
Swing contract, 213–214
System buy price (SBP), 190, 197–198
System long, 190
System price, 189
System sell price (SSP), 190, 197–198
System short, 190
Taylor Series, 294
Terminal nodes, option payoff at, 123–124
Tesla, 210
Three asset options, 183–187
Tidal power, 2
Time varying drift and volatility, 8
Time-varying mean, 76
Trinomial lattice, 137–145
 branching types for nodes in trinomial lattice, 139
 downward branching node, 142–143, 145
 mean reverting trinomial lattice, 138
 normal branching node, 140–141, 145
 pricing using lattice, 144
 upward branching node, 141–142, 144–145
Two asset options, 171
- American options, 178–182
- European exchange options, 171–173
- European options on maximum or minimum, 173–178

Two dimensions, Ito product and quotient rules in, 11–14

Two-factor spot model, 81–82

Uniform distribution, 275–277

Uniform grid, 156

Univariate cumulative normal function, 55

Value at risk (VAR), 192

Vanilla European options, Greeks for, 259–264

Vanilla options, 47–70

Vanilla options, grid methods for, 145
- log-transformed grids, 159–162
- standard grids, 146–159
- stochastic process, 145

Vanilla options, lattice methods for, 115
- constructing and using standard binomial lattice, 121–129
- Johnson binomial lattice, 133–137
- log transformed binomial lattice, 129–133
- standard binomial lattice, 115–121
- trinomial lattice, 137–145

Variance, 268
- of n variables, 269–270
- one variable, 268

Ornstein–Uhlenbeck process, 19–21
- three variables, 269
- two variables, 268–269

Vector class, 245–250

Vega function, 60, 128–129, 263–264

Visual Basic, 67

Volatility, 5
- historical, 61–64
- implied, 61, 64–67
- smile, 64

Weibull distribution, 93, 202–204
- doubly truncated Weibull distribution, 98–102
- standard Weibull distribution, 93–98

Wind contracts, 200
- contract valuation, 206–209
- simulation and calibration, 204–205
- stochastic process for power spot price, 205–206

Weibull distribution, 202–204

Wind generation, 35–36
- actual half hourly UK, 39
- actual half hourly UK summer, 40
- actual half hourly UK winter, 40
- current and previous day wind generation load factors, 37
- current and previous half hour wind generation load factors, 37
- simulated half hourly UK, 40