INDEX

A9 autobahn in Germany, 134, 135, 407
ACCEL, 324
Accelerating, 8, 22, 27, 59, 78, 91, 122, 295, 296
Access Economy, 344
Acoustic signals, 108
Ad-hoc mobility solutions, 354
Ad-hoc networks, 133
Aerospace industry, 153
Agenda for auto industry culture change, 396
increasing speed, 398
service-oriented business model, 397–398
V-to-home and V-to-business applications, 399
Agile operating models, 330
Agriculture, 154
productivity, 155
sector, 154–157
Air pollution, 27
AirBnB, 311
Airplane electronics, 144
Aisin, 9
Albert (head of design at Yahoo), 228
Alexandra (founder and owner of Powerful Minds), 228
Alibaba Alipay payment system, 372
Alternative fuels, autonomous vehicles enabling use of, 305
Altruistic mode (a-drive mode), 252
Amazon, 138, 141, 311
American Trucking Association, 68
Android operating system, 327
Anthropomorphise products, 290
Appel Logistics transports, 167
Apple, 9, 138, 327
CarPlay, 285
Apple Mac OS, 247
Apple-type model, 323
Application layer, 119
software, 118
Artificial intelligence, 115, 255, 291, 332–333
Artificial neuronal networks, 114–115
Asia projects, 371–374
Assembly Row, 386
Assessment of Safety Standards for Automotive Electronic Control Systems, 144
Assistance systems, 71–77
Audi, 5, 130, 134, 137, 179, 211, 301, 318, 322, 398
Driverless Race Car, 5
piloted driving, 286
piloted-parking technology, 386–387
Audi A7, 44, 198, 282
Audi A8 series-car, 79, 180
Audi AI traffic jam pilot, 79
Audi Fit Driver service, 318–319
Audi piloted driving lab, 227, 229
Audi Q7, 74
 assistance systems in, 75
Audi RS7, 43, 44, 79
 autonomous racing car, 179
driverless, 227
Audi TTS, 43
Audi Urban Future Initiative,
 384–386, 406
Augmented reality, 279
 vision and example, 279–280
Authorities and cities, 171–173
Auto ISAC, 146
Autolib, 317, 344
Autoliv, 285
Automakers’ bug-bounty programs, 146
Automated car, 233, 246, 264, 289, 384
Automated driving
 division of labour between driver
 and driving system, 48
 examples, 51–53
 image, 177
 levels of, 47–51
 scenarios for making use of
 travelling time, 52
 strategies, 53–56
 technology, 160
Automated vehicles, 9, 174, 246
Automated Vehicles Index,
 367–368
Automatic car, 233, 244
Automatic pedestrian highlighting,
 78
Automation
 ironies of, 76
 responsibility with increasing, 235
Automobile, 3, 21
 locations, 405
 manufacturers, 311
Automotive design, 265–266
Automotive Ethernet, 126
Automotive incumbents operate, 330
Automotive industry, 332–335, 367, 379, 397
Automotive technology, 327–328
AutoNet2030 project, 369
Autonomous buses, 14, 81, 158, 159, 175, 302
Autonomous cars, 25, 126, 197, 205–206, 233, 244, 270
 expected worldwide sales of, 85
 savings effects from, 67–68
 applications, 10–12, 160
 aspects for, 93
 Audi car, 5
 autonomous Audi TTS on
 Way to Pikes Peak, 43
 in combination with
 autonomous loading hubs, 166
 driving to hub, 213
 ecosystem, 18–20, 131
 element, 243
 facts about, 306
 functions, 74
 impression, 40
 industry, 16–18
 living room in Autonomous
 Mercedes F015, 44
 milestones of automotive
 development, 4
 NuTonomy, 6
 projects, 41–45
 real-world model of, 92
 scenarios, 211–215
 science fiction, 39–41
 technology, 9–10, 92
time management, 215–218
vehicles, 12–16
See also Human driving
Autonomous driving failure, 221
consequence, 221–222
decision conflict in autonomous
car, 223
design options, 222–223
influencer, 223–224
Autonomous Mercedes F015,
living room in, 44
Autonomous mobility, 12, 13,
16–17, 172, 405
establishment as industry of
future, 404–405
resistance to, 171–172
Autonomous Robocars, 81
Autonomous sharp, 274
‘Autonomous soft’ mode, 274
Autonomous trucks, 161
from Daimler, 163
savings effects from, 68–69
Autonomous vehicles, 26, 81, 99,
138, 155, 182, 221, 238,
249, 255, 353–354
enabling use of alternative
fuels, 305
integration in cities, 406
promoting tests with, 407
uses, 153
AutoVots fleet, 350

Backup levels, 127
Baidu apps, 338, 372
Base layer, 119
Becker, Jan, 42–43
Behavioural law, 234
Being driven, 61, 63, 78,
342–343
Ben-Noon, Ofer, 142, 143, 145
Benz, Carl, 3, 4
Bertha (autonomous research
vehicle), 42
Big data, 313, 332–333
BlaBlaCar, 359
Blackfriars bridge, lidar print
cloud of, 104
Blind-spot detection, 78
Bloggers, 225–227
Blonde Salad, The, 226
Bluetooth, 130, 142, 154
BMW, 6, 130, 137, 174, 180,
316, 320, 322, 332–333,
372, 398
3-series cars, 338
BMW i3, 27
holoactive touch, 285
Boeing 777 development, 243
Boeing, 787, 261
Bosch, 9, 181–182
Bosch, Robert, 333
Bosch suppliers, 315
BosWash, metropolitan region, 384
Budii car, 272–273
Business models, 311, 353–355
automobile manufacturers, 311
data creators, 319–320
examples, 312
hardware creators, 314–315
options, 312–314
passenger looks for new
products, 321
passenger visits website, 321
service creators, 316–319
software creators, 315–316
strategic mix, 322–323
Business vehicle, 15
Business-to-consumer car sharing,
342–343
Cadillac, 180
California PATH Research
Reports, 298–299
Cambot, 290
Cameras, 111, 126
CAN bus, 126, 143
Capsule, 33
Car and ride sharing, studies on,
348
Car dealers, repair shops and insurance companies, 173–174
Car manufacturers, 328, 396–397
business model, 312
Car-pooling efforts, 364–365
Car-sharing programs, 364–365
service, 383
Car-sharing, 206
Car2Go, 317, 345
Casey Neistat, 226
Castillo, Jose, 364–365
Celebrities and bloggers, 225–227
Central driver assistance control unit, 124
Central processing unit, 96, 124
zFAS, 125
Centre for Economic and Business Research in London, 189
Chevrolet, 40
app from General Motors, 316
Spark EV, 27
Cisco, 41
CityMobil project, 369, 406
CityMobil2, 14, 157
Cognitive distraction, 287
Coherent European framework, 246
Committee on Autonomous Road Transport for Singapore, 347
Communication, 198–200
investing in communication infrastructure, 403–404
technology, 261
Community, 341
detection algorithms, 389
Companion app, 316
Compelling force, 223
Competitiveness
Iain Forbes, 368–369
projects in Asia, 371–374
projects in Europe and United States, 369–371
projects in Israel, 374–375
Computer operating systems, 247
Computer-driven driving, 108
Computerised information processing, 109
Congestion pricing, 296
Connected car, 129
ad-hoc networks, 133
connected driving, 137–138
connected mobility, 138
development of mobile communication networks, 130
digital ecosystems, 138
eCall, 136–137
online services, 136–137
permanent networks, 130
statement by telecommunications experts, 132–133
V-to-I communication, 134–135
V-to-V communication, 133–134
V-to-X communication, 135–136
See also Digitised car
Connected mobility, 129, 138
Connected vehicles, 138
vulnerability of, 142
Connected-car services, 313
Connectivity of vehicles, 147
Consumer-electronics companies, 285
Container Terminal, 159
Content creators, 319–320
Continental (automotive suppliers), 9, 284, 315
Continuous feedback, 281
Convenience, 302–304, 306
Conventional breakthrough approach, 332
Conventional broadband applications, 132
Conventional car manufacturing, 10
Cook, Tim, 182
Cooperative intelligent transport system (C-ITS), 369–370
Corporate Average Fuel Economy standard, 297
Cost(s), 187–192, 295
autonomous vehicles enabling use of alternative fuels, 305
fuel economy, 297–299
intelligent infrastructures, 299–301
land use, 304
operating costs, 301–302
relationship between road speed and road vehicle throughput, 296
throughput, 295–297
Croove app, 318
Culture, 330
change, 396
differences, 195–197
and organisational transformation, 395
Curtatone, Joseph, 387
Customers’ expectations attitudes, 204–207
incidents, 203–204
interview with 14 car dealers, 207
persuasion, 207–208
statements by two early adopters, 205
Cyber attacks, 141
Cyber hacking or failures in algorithms, 354
Cyber security, 141–146
Cyber-physical systems, 9

Daimler, 130
Data, 121
categories in vehicle, 147
creators, 320–322
from passengers, 94–95
privacy, 147–148
processing, 91
protection principles, 148
recorders, 239
Data-capturing technology, 103
Data-protection issues, 239
Database, 98
Decelerating, 91, 122
Decision-making mechanism, 369
Declaration of Amsterdam, 246–247
Deep learning, 115
Deep neural networks, 115–116
Deere, John, 154, 155
Deere, John, 154, 155, 263
Defense Advanced Research Project Agency (DARPA), 41
Degree of autonomous driving, 53
Degree of autonomy, 262
Degree of market penetration, 84
Degree of not-invented-here arrogance, 332
Degree of vehicle’s automation, 233–234
Delhi municipal government, 21–22
Delphi, 9, 181
Delphi Automotive Systems, 6
Demise of Kodak, 111
Denner, Volkmar, 333–334
Denso, 9
Depreciation, 345
Destination control, 299, 300
Digital company development, 395–396
Digital economy, 225
Digital ecosystems, 138
Digital light-processing technology, 277, 279
Digital maps, 101
Digital products, 267
Digitised car algorithms, 113–117
backup levels, 127

car as digitised product,
111–112

data, 121

drive recorder, 125–126

drive-by-wire, 122

over-provisioning, 127

processor, 122–125

software, 117–121

See also Connected car

Digitising and design of vehicle,
265–267

Dilemma situations, 61

Direct attacks, 141

Direct connectivity of vehicle, 130

Disruptions in mobility, 31, 34

arguments, 34–35

history, 32–33

OICA, 34

Disruptive technologies, 221, 223, 402

Document operation-relevant
data, 263

Doll, Claus, 166

Dongles, 142

Drees, Joachim, 165

‘Drive boost’ mode, 274

“Drive me” project, 370

Drive recorder, 125–126

‘Drive relax’ mode, 274

Drive-by-wire, 122

DriveNow, 317, 345

Driver, 235

role, 235–238

Driver distraction, 55

causes and consequences, 278

Driver-assistance systems, 53, 71,
160, 174, 222, 298, 333, 353

Driverless

cars, 3, 7, 27–28, 222, 233, 244

taxi, 302

vans, 406

vehicles, 168

Driverless Audi RS7, 227–229

Driverless Race Car of Audi, 5

Driving

manoeuvres, 91

modes, 107

oneself, 342–343

Drunk driving, 303

Dvorak keyboard, 242

Dynamic patterns of movement in
city of London, 390

eCall. See Emergency call (eCall)

Eco-driving functions, 297

Eco-routing applications, 299

Economic(s), 65, 328

approach, 250–251

exchange, 344

potential savings from self-
driving cars and trucks, 66

savings effects from

autonomous cars, 67–68

from autonomous trucks,
68–69

value shifts in automotive
industry, 329

Ecosystem

degree of autonomy, 262–263

ecosystem of vehicles, 263–264

intelligent connected vehicle,
261–262

tractor to ecosystem, 262

of vehicles, 263–264

e-drive mode. See Egotistical mode
(e-drive mode)

e-Golf, 180

Egotistical mode (e-drive mode),
252

Eight Race car Drivers, statements
by, 62

Electric cars, 26, 27

Electric motors, 26

Electric Tesla Model S, 203

Electrification, 26–27

Electronic stability control (ESC),
303
Electronic stability program (ESP), 333
Elevator technology, 32
Emergency call (eCall), 136–137
Emerging societies
automotive industry, 379
process of industrialization, 378
Emissions, 187–192
End-2-end deep neural networks, 115
Endorsers, 225
Engine management, 122
Enhanced mobile broadband (eMBB). See Conventional broadband applications
Entertainment, 74, 212
Epley, Nicholas, 292
Ericsson, 130
Ethernet, 143–144
Ethics and morals for autonomous driving
approaches, 250–252
avoid collisions, 249–250
conflicts, 252–254
ethics commission, 254–255
experiments, 252
Julian Nida-Rümelin statement, 253–254
level of transparency, 255
Martin Kolmar statement, 256
trolley problem, 250
Europe, projects in, 369–371
European Commission, 246
European Union, 407
Facebook, 26, 117, 227, 319
Fail operational system, 123
Fail-safe system, 123
Fallback level, 127
Faraday Future, 183
Federal Motor Vehicle Safety Standards, 234
Federal Trade Commission (FTC), 146
Fendt manufacturer, 154
Ferragni, Chiara (Italian fashion designer), 226
Fiat 500e, 27
Fields, Mark, 180
Fiesta model, 227
Fiesta Movement, 227
Financial incentives, 222
Finnish mobility, 371
First autonomous vehicles, categories of, 82
5G, 131–133
Automotive Association, 130
licenses, 403
networks, 132, 173, 379
Flannagan, Carol A., 303–304
Fleet(s), 349–350
management, 364–365
of robo-cars, 347
Forbes, Iain, 368–369
Ford, 6, 130, 180, 322, 332–333, 372
Ford Fiesta, 227–229
Ford Focus Electric, 27
Ford Sync system, 316
Forward collision warning, 4, 72, 193
4G networks, 65, 165, 377, 379, 403
Fraunhofer Society, 320
Frazzoli, Emilio, 112
Free time, 58
Fröhlich, Dieter, 148
Front and rear crash sensing, 78
Fuel economy, 297–299
Fuel-cell electric vehicles, 26–27
Gassmann, Oliver, 300
Geisi, 157
General Motors, 6, 40, 133–134, 136–137, 180, 281, 322, 332–333
Generation Y, 28
German Association of the Automotive Industry (VDA), 17
German car manufacturers, 367–368
Germany, A9 autobahn in, 134, 135
Gett app, 317
Gladbach, Peter, 148
Glaser, Erik, 198
Global positioning system (GPS), 141, 377
GPS-based satellite navigation systems, 104
navigation, 154, 263
Android Auto, 285
cars, 54
mapping vehicles, 336
maps, 338
GPUs, 115
Gradual automation, 211
Grape harvest, 156
Greenwheels, 345
Gridlock, 22
Grove, Andy (Intel CEO), 222
GuideConnect system, 154

Hardware creators, 314–315
Hazard warnings, 137
HD map, 101, 105, 135
Head-up display, 279, 280, 281
Henriksson, Henrik, 161
Her (2013 movie), 291
Herbie (anthropomorphic racing beetle), 41
HERE, 137–138
live map, 101
Map Service, 101
Hiesinger, Heinrich (ThyssenKrupp CEO), 324–325
High-performance software, 281
Highly automated vehicles, 403
Highway assistant, 49
Highway chauffeur, 49
Highway pilot, 49
Hilly landscape of Istanbul, 385
Hockenheim racetrack, 227, 229
Honda Fit EV, 27
Hongqi HQ3, 379
Huang, Jen-Hsun (CEO of Nvidia), 6
Huawei, 130, 131, 372
Human dignity, 251, 253
Human driving, 21
facts about, 21, 23
traffic problems, 22
See also Autonomous driving
Human senses, 279
Human voice, 292
Human-like speech, 292
Humanising driving, 102
technology, 292–293
Human–machine interaction, 233, 277, 282, 288, 332–333
causes and consequences of driver distraction, 278
head-up display, 280
mechanics, 277–283
take-over request, 285–287
technology, 332
trust, 287–293
user interfaces, 283–285
vision and example of augmented-reality application, 279–280
Hyundai, 180, 372
IBM, 31
IBM Global Parking Survey, 191–192
IBM OS/2, 247
IEEE, 243
Image processing, 124
Imperative programming, 99
In-vehicle algorithms, 298
Individualised displays, 316
Industrial policy, 405
Industrialization process, 378
Industry clusters development, 405–406
Infinity Q50, 123
Influencers, 223–225
Information
to passengers and to environment, 108
technology, 261
Infotainment devices, 142, 284, 285
Instant torque, 26
Insurance, 369
companies, 356–357, 358
Insurance industry
business model, 353–355
liability, 355–356
new products, new services, 356–359
Intel, 35, 42, 125, 130
Intelligent connected vehicle, 261–262
Intelligent infrastructures, 299–301
International norm committees, 243
International Transport Forum of OECD, 349
Internet, 336
in cars, 136
connectivity, 320
giants, 138, 359
industry, 338
services, 19
iPhone, 7, 398
ISO 11270 Norm for Lane Keeping Assistance System, 244
ISO committees, 243
Israel, projects in, 374–375
Jaguar, 42, 130
Jaybridge Robotics, 181
Junge, Lutz, 115
K-City, 7
construction, 7
self-driving car test facility, 373
Keecker Robot, 291
Keller, David, 39
Kia, 6, 7
Kia Soul EV, 27
Kinze manufacturer, 154
Klout, 227
Knight Rider TV series, 41
Kodak, 111, 312
Kolmar, Martin, 256
Kolodge, Kristin, 289
Kred company, 227
Kremling, Hartmut, 131
Land Rover, 42, 130
Land use, 304
Landmarks, 93, 103
Lane localisation, 103
Lane modelling, 103
Lane-departure warnings, 72, 78
Lane-keeping assistance systems (LKAS), 244
Lantz, Brett, 99–100
Last-mile delivery, 168
Launching ride-and car-sharing services, 317
Le Super Electric Ecosystem (LeSee), 183
LeEco, 16, 183
Legal entities, 235
Legal framework, 57, 79, 246, 335, 378, 401–402
Legislation, 11, 172, 367, 401
Leisure time, 34, 212, 322
LeSee. See Le Super Electric Ecosystem (LeSee)
Lexus, 173
Liability, 355–356
law, 237
mechanism, 237
Lieu, Ted, 145
Life magazine, 40
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light detection and ranging technology (lidar technology)</td>
<td>95, 96, 126</td>
</tr>
<tr>
<td>Line-haul transportation</td>
<td>160–168</td>
</tr>
<tr>
<td>Little, Patrick</td>
<td>126</td>
</tr>
<tr>
<td>Live roads</td>
<td>100, 102</td>
</tr>
<tr>
<td>Living Machine, The</td>
<td>39</td>
</tr>
<tr>
<td>Localisation, 94</td>
<td></td>
</tr>
<tr>
<td>accurate lane</td>
<td>103</td>
</tr>
<tr>
<td>vehicle’s own</td>
<td>104</td>
</tr>
<tr>
<td>Localising, 94, 101–104</td>
<td></td>
</tr>
<tr>
<td>Logistics operations</td>
<td>159</td>
</tr>
<tr>
<td>London</td>
<td></td>
</tr>
<tr>
<td>Centre for Economic and Business Research in</td>
<td>189</td>
</tr>
<tr>
<td>dynamic patterns of movement in city of</td>
<td>390</td>
</tr>
<tr>
<td>lidar print cloud of Blackfriars Bridge in</td>
<td>104</td>
</tr>
<tr>
<td>pedestrians in traffic</td>
<td>196</td>
</tr>
<tr>
<td>Long-distance autonomous vehicle, interior of</td>
<td>15, 16</td>
</tr>
<tr>
<td>Long-haul trucks</td>
<td>69</td>
</tr>
<tr>
<td>Long-term evolution (LTE)</td>
<td>65</td>
</tr>
<tr>
<td>LTE-V</td>
<td>131–133</td>
</tr>
<tr>
<td>Luxe app</td>
<td>319</td>
</tr>
<tr>
<td>Lyft</td>
<td>174, 344</td>
</tr>
<tr>
<td>Ma, Jun</td>
<td>373</td>
</tr>
<tr>
<td>Machine-learning, 99, 113</td>
<td></td>
</tr>
<tr>
<td>algorithms, 93, 96, 98</td>
<td></td>
</tr>
<tr>
<td>116–117, 336</td>
<td></td>
</tr>
<tr>
<td>technology</td>
<td>332</td>
</tr>
<tr>
<td>Macroeconomic analyses</td>
<td>243</td>
</tr>
<tr>
<td>‘Made in China 2025’</td>
<td>371–372</td>
</tr>
<tr>
<td>Magna</td>
<td>9</td>
</tr>
<tr>
<td>Manufacturers, 17, 21, 45, 55, 84, 179–181, 263, 331</td>
<td></td>
</tr>
<tr>
<td>Mapping</td>
<td>94, 101–104</td>
</tr>
<tr>
<td>Mars Rover Curiosity</td>
<td>153</td>
</tr>
<tr>
<td>Mass motorisation</td>
<td>39</td>
</tr>
<tr>
<td>McKinsey & Company</td>
<td>320</td>
</tr>
<tr>
<td>Megacities, 58, 381–383</td>
<td></td>
</tr>
<tr>
<td>Megatrends in mobility</td>
<td>25</td>
</tr>
<tr>
<td>connectivity</td>
<td>25–26</td>
</tr>
<tr>
<td>electrification</td>
<td>26–27</td>
</tr>
<tr>
<td>sustainability</td>
<td>27–28</td>
</tr>
<tr>
<td>urbanisation</td>
<td>26</td>
</tr>
<tr>
<td>Melody of speech</td>
<td>292</td>
</tr>
<tr>
<td>Mercedes, 137, 179, 180,</td>
<td></td>
</tr>
<tr>
<td>316, 318, 322, 332–333, 398</td>
<td></td>
</tr>
<tr>
<td>F015, 282</td>
<td></td>
</tr>
<tr>
<td>Mercedes-Benz</td>
<td>372</td>
</tr>
<tr>
<td>Mercedes-Benz robot</td>
<td>290</td>
</tr>
<tr>
<td>S-Class cars, 184, 261</td>
<td></td>
</tr>
<tr>
<td>Self-Driving F015</td>
<td>5</td>
</tr>
<tr>
<td>Mercedes’ Self-Driving F015</td>
<td>5</td>
</tr>
<tr>
<td>Metaphors</td>
<td>290</td>
</tr>
<tr>
<td>Metropolises, 382, 406</td>
<td></td>
</tr>
<tr>
<td>Meyer, Andreas</td>
<td>175</td>
</tr>
<tr>
<td>Microsoft Windows</td>
<td>9, 183, 247,</td>
</tr>
<tr>
<td>327</td>
<td></td>
</tr>
<tr>
<td>Military industry</td>
<td>153</td>
</tr>
<tr>
<td>Mobileye</td>
<td>9, 16</td>
</tr>
<tr>
<td>Mobility, 363</td>
<td></td>
</tr>
<tr>
<td>autonomous</td>
<td>171–172</td>
</tr>
<tr>
<td>behaviours</td>
<td>222</td>
</tr>
<tr>
<td>connected</td>
<td>138</td>
</tr>
<tr>
<td>platforms</td>
<td>174–177, 184, 317</td>
</tr>
<tr>
<td>Mobility as social interaction</td>
<td></td>
</tr>
<tr>
<td>communication</td>
<td>198–200</td>
</tr>
<tr>
<td>cultural differences</td>
<td>195–197</td>
</tr>
<tr>
<td>pedestrians in traffic in London</td>
<td>196</td>
</tr>
<tr>
<td>pedestrians in traffic in Teheran</td>
<td>197</td>
</tr>
<tr>
<td>Mobility, disruptions in</td>
<td>31, 34</td>
</tr>
<tr>
<td>arguments</td>
<td>34–35</td>
</tr>
<tr>
<td>history</td>
<td>32–33</td>
</tr>
<tr>
<td>OICA</td>
<td>34</td>
</tr>
<tr>
<td>Mobility, megatrends in</td>
<td>25</td>
</tr>
<tr>
<td>connectivity</td>
<td>25–26</td>
</tr>
<tr>
<td>electrification</td>
<td>26–27</td>
</tr>
</tbody>
</table>

Note: The table includes page numbers for each term as mentioned in the provided text.
sustainability, 27–28
urbanisation, 26
Mobility, problem with implications of congestion in United States, 188
safety, 192–193
time, costs and emissions, 187–192
Modes of transportation, 12, 81, 138, 343, 384
Modified 3-series BMW, 180
MOIA Company, 317
Monitoring, 106–108
Monotonous voices, 292
Montparnasse Station, Paris, accident at, 32, 33
Moore’s Law, 124
Moovel mobility platform, 19, 174, 317
Moral behavior, 253–254
Morgan Stanley Research, 65, 66
MP3 technology, 312
Multi-layered cyber security approach, 145
Multi-purpose vehicles, 14
Multimodal approach, 281
Multimodal transport app, Finland, 371
Multipliers, 225, 228
Musk, Elon, 181
National Highway Traffic Safety Administration, 55, 57, 61, 125, 144, 191
Nauto, 41, 42
Navia, 158
Navya, 41, 42
Nelson, Bill, 146
Netflix, 141, 311, 319
Network coverage, 403
Neural Networks, 99, 115–116
New Displays, 283, 284
New York City public transportation network, 363
Nida-Rümelin, Julian, 253–254
Nielsen’s ten usability heuristics, 283
NioEV’s new sports car Nio EP9, 5
Nissan, 6, 198
Nissan Leaf, 27
Nissan Teatro for Dayz, 273–274
Nokia, 130, 131
Norms, 241–242, 243–246
NuTonomy, 6, 9, 16, 112, 315
Nvidia, 6, 9, 16, 117, 125, 183, 315
Object recognition, 55, 93
Ohlsen, Jörg, 83
Online services, 129, 136–137
OnStar, 136–137
Open-source software, 119
Operating costs, 301–302
Organisation Internationale des Constructeurs d’Automobiles (OICA), 34
Original equipment manufacturers (OEMs), 146
Orix, 317, 344
Output layer, 119
Over-provisioning, 127
Paolo (Netflix Design Director), 228
PARK incentive program, 385
Park24, 317, 344
Parking space, 304
system, 78
Parsons, Philip, 388
Particulate matter (PM), 191, 204
Pearl River Delta, 386, 389
Pedestrians car’s interactions with, 200 traffic in London, 196 traffic in Teheran, 197
Peer-to-peer
car sharing, 342–343
service, 350–351
Perceptual errors, 249
Peters, Gary, 146
Peugeot Instinct concept car, 273
Physical roadside objects, 103
Pikes Peak drive, 179
Pivotal 2015, 320
Planning, 94, 106–108, 406
behavioural, 107
mission, 106–107
trajectory, 336
Platooning, 133, 163, 165
autonomous truck, 347
vehicle, 299
Platoons, 8, 49, 164, 166, 299, 369
Players
manufacturers, 179–181
mobility platforms, 184
new players, 183
suppliers, 181–182
technology companies, 182–183
Playing fields, autonomous driving
agricultural sector, 154–157
autonomous tractor in use, 156
last-mile delivery, 168
line-haul transportation, 160–168
logistics operations, 159
military and aerospace
industry, 153
public transportation, 157–159
warehouse transportation, 159
Plug-in hybrid electric vehicles, 26
Pokrzywa, Jack (Director of SAE), 244–245
Politicians, 172, 249
Politics, 171–173
Polmans, Kristof, 123–124
Pooling, 342–345
Power, J. D., 288
PPzuche, 317, 344
Pre-programmed algorithms, 250
Premium manufacturers, 14, 315
Private transport, 246, 404
Processing unit, 73, 91, 315
Processors, 122–125
automotive, 126
graphics, 167
Qualcomm Snapdragon, 126
Qualcomm Technologies, 126
Product
design, 267
estimated revenues by product
package, 77
innovation, 225
Protection and liability of
autonomous systems
data recorders, 239
degree of vehicle’s automation, 233–234
driver role, 235–238
legal situation in United States, 234–235
responsibility with increasing
automation, 235
Vienna Convention, 234
PSA, 180–181
Public opinion, 171–173
Public pilot project, 370
Public transport, 12, 18, 34, 54, 343, 404
Public transportation, 157–159, 347, 363, 386, 389
Purucker, Christian, 76
Qualcomm Technologies, 9, 125, 126, 130, 315
QWERTY keyboard
configuration, 242
Radar sensors, 134, 333
Radar technology. See Radio
detection and ranging
technology (Radar
technology)
Radio detection and ranging technology (Radar technology), 95, 126

Railways
companies, 174—177
development, 32
network, 386

Rand Corporation, 6, 191

Real-time traffic, 137, 262

Real-world model, 92, 99, 105—106
of autonomous driving, 92
computer-driven driving, 108
data from passengers, 94—95
information to passengers and to environment, 108
lane-level and intersection mapping based on lidar, 105
lidar print cloud of blackfriars bridge, 104
mapping and localising, 101—104
planning and monitoring, 106—108
sensing and detecting, 95—100
sensors for vehicle dynamics information, 97
sensors in autonomous vehicles, 95
simulation, 91—92
un-fused sensor data of static and dynamic objects, 106

Redundant steering systems, 124
Reich, Andreas, 135, 136
Reinforcement learning, 114
Relaxation, 80, 212, 218
Reliability of electronic brake systems, 122
Remote vehicle monitoring, 261
Responsibility with increasing automation, 235
Ride-sharing, 22, 184, 206, 302
companies, 404
models, 343
services, 344, 384, 397

RIO platform, 167

Road(s), 103
experience management, 94
networks in Chinese megacities, 382
road-safety legislation, 192
and telecommunication networks, 379
traffic, 195
users, 108

Roadmap
assistance systems, 71—77
categories of first autonomous vehicles, 82
development phases, 77—81
estimated revenues by product package, 77
expected worldwide sales of cars, 85
sales forecasts, 84—86
types of vehicles, 81—84
Roadside objects, 103, 107
Roadster, 27
Robo-cars, 12, 18, 19, 83, 298, 346—349, 347, 406
autonomous, 13
from Google, 335—336
Robots, 10, 58, 238
Roland Berger & Partners, 320
Rosa, Hartmut, 217

SAE J3016 document, 244
Safety, 192—193, 295, 302—304
autonomous vehicles enabling use of alternative fuels, 305
fuel economy, 297—299
functions, 74, 78
intelligent infrastructures, 299—301
land use, 304
operating costs, 301—302
relationship between road speed and road throughput, 296
vehicle throughput, 295—297
_sales forecasts, 84–86
Samuelsson, Hakan, 174
San Francisco Park, 301
Savarese, Domenico, 354
Savings effects
 from autonomous cars, 67–68
 from autonomous trucks, 68–69
Scania truck, 162, 261
Schaefler, 9
Science fiction, 3, 39–41
Scientists, 177
Security and Privacy in Your Car Act of 2017 (SPY Car Act of 2017), 145
Segway scooter, 221
Self-determination, 147, 148, 205
Self-driving
 cars, 22, 24, 25, 39, 61, 203, 223, 224, 233, 244, 261, 295, 299, 304, 337, 346, 395
 features, 222
 fleet of vehicles, 171–172, 349
 grain trailer, 263
 prototypes, 198, 377
 taxis, 337, 345, 374
 tractors, 8, 154, 155, 156
 trucks, 66, 69, 70, 164, 165
 vehicles, 153, 171, 175, 222, 225, 233, 354, 368, 379, 388
Self-learning system, 55, 238
Self-parking, 74, 288, 387
Sensing, 93
 and detecting, 95–100
 front crash-sensing system, 78
Sensor(s), 261, 374–375
 applications, 132
 in autonomous vehicles, 95
data, 165
 for vehicle dynamics
 information, 97
Sensory perception, 279
Service creators, 316–319
Service-oriented business model,
 397–398
Sharing economy
 fleets, 349–350
 peer-to-peer service, 350–351
 robo-cars, 346–349
 sharing, pooling, 342–345
trend, 341–342
Shashua, Amnon, 93
Shenzhen, 386–389
Shneiderman’s eight golden rules
 of interface design, 283
Shoeibi, Houchan (President, Saint-Gobain Sekurit), 271
Shuttle service, 14, 383
Simulation, 91–92, 121, 345, 350
Singapore Autonomous Vehicle Initiative, 372–373
Smart-city
 challenges, 383
 features, 406
Smartphone, 79, 216, 222, 317, 402, 407
 app, 6, 28, 358, 374
 industry, 127
 signals, 136
 unrestricted spread, 255
Social acceptance, 402
Social discourse, 402
Social exchange, 344
Social interaction
 communication, 198–200
 cultural differences, 195–197
 mobility as, 195
 pedestrians in traffic in London, 196
 pedestrians in traffic in Teheran, 197
Social networks, 7, 225, 227, 341
Society of Automotive Engineers (SAE), 47, 144, 243–245
Software, 93, 111, 117–121
 creators, 315–316
 errors, 249
testing, 120
Somerville, 386–389
Spotify, 141, 316, 319
Stahl, Florian, 113–115
Stakeholders
car dealers, repair shops and insurance companies, 173–174
public opinion, politics, authorities and cities, 171–173
railway companies and mobility platforms, 174–177
scientists, 177
technology and telecommunication companies, 173
train station as transportation hub, 176
Standards, 241
characterisation, 242–243
development of technology, 241–242
dominant design, 247–248
State Farm Insurance, 316
State Route 91 in Southern California, 296
Statham, Jason (British actor), 226
Status-conscious customers, 204
Steer-by-wire, 122
solutions, 324
system, 123
Steering, 76, 91, 96, 108, 122
manoeuvre, 253, 286
redundant steering systems, 124
systems, 324
ThyssenKrupp, 123
wheel, 15, 43, 72, 76, 123, 238, 285
Stop-and-go traffic, 58, 206, 218, 295, 299
Suburbs, 317, 404
Supervised learning, 113–114
Suppliers, 17, 35, 41, 70, 77, 125, 171, 181–182, 243, 284, 312, 323, 333, 398, 405
Swedish car manufacturer, 355
Swiss Railway Corporation, 174–176
Systematic connectivity, 403
Tactile signals, 72, 108
Take-over request, 285–287
TaxiBots fleet, 350
Technical standards, 247, 371
Technological functions, 247
Technology, 173
companies, 55, 182–183
fusion, 330–334
partnerships, 318
Teheran, pedestrians in traffic in, 197
Telecommunication companies, 173
statement by telecommunications experts, 132
Telematics
data, 356
devices, 142
services, 142
Ten-point plan for governments, 401
autonomous mobility
establishment as industry of future, 404–405
autonomous vehicles
integration in cities, 406
industry clusters development, 405–406
initiating social discourse, 402
investing in communication infrastructure, 403–404
investing in transport infrastructure, 402–403
linking public and private transport, 404
promoting research, development and education, 406–407
promoting tests with autonomous vehicles, 407
setting legal framework, 401–402
Terror (film), 252
Tesla, 5, 27, 53, 125, 179, 203–204
Texas A & M University, 69
Texas Institute for Urban Mobility, 68
Thune, John, 146
ThyssenKrupp Steering, 123, 324–325
Time, 187–192, 295, 302–304
autonomous vehicles enabling use of alternative fuels, 305
fuel economy, 297–299
intelligent infrastructures, 299–301
land use, 304
management, 215–218
operating costs, 301–302
relationship between road speed and road throughput, 296
vehicle throughput, 295–297
Time-critical, reliable applications, 132
Touareg, Volkswagen, 41
Toyota, 6, 181, 332–333
research into artificial intelligence and self-driving cars, 183
Toyota RAV4 EV, 27
Tractor’s steering system, 154
Traditional automobile companies, 53
Traditional automotive suppliers, 9, 125
Traffic, 389
and art, 389–390
flows control, 248
infrastructure, 58, 247–248, 377, 383, 386
laws, 148, 249
regulations, 44, 107, 195, 255, 373
situation, 6, 10, 21, 55, 65, 80, 93, 102, 160, 187, 206, 251, 316, 336, 365, 386
in United States, Canada, and Northern and Central Europe, 195
Traffic jams, 21, 63, 68, 189, 247, 286, 365, 388
assistants, 10, 53, 113
in daily commuter traffic, 365
time lost in, 187
Transparency, 147, 148, 167, 255
Transport cost, 166, 346, 347
Transport infrastructure, investing in, 402–403
Transportation system, 8, 158, 324, 384–385
Trendsetters, 225
Trojans, 142
Trolley problem, 250
Truck(s), 66, 160
of de Winter Logistics transport, 167
explanation of savings effects from autonomous, 68–69
potential savings from self-driving cars and, 66
Trust, 287–293
TRW, 9
Twitter, 26, 141, 226, 227
Type-approval authorities, 172
law, 234
Uber, 174, 184, 311, 317, 343, 358
UK automotive industry, 368
Ultrasonic sensors, 126, 333
Un-fused sensor data of static and dynamic objects, 106
Unbox Therapy, 226
Underused assets, 341, 351
UNECE vehicle regulations, 234
Uniform legal framework, 246
Union Square in Somerville, 387–388
United Nations General Assembly, 192
United States, 63, 67, 367, 402
current fuel economy for cars, 59
implications of congestion in, 188
legal situation in, 234–235
Luxe start-up in, 319
projects in, 369–371
roads in, 86
traffic in, 195
University of Michigan
Transportation Research Institute, 120
Urban Challenge, 42
Urban development
Audi urban future initiative, 384–386
megacities, 381–383
Shenzhen, 386–389
smart-city challenges, 383
Somerville, 386–389
traffic and art, 389–390
“Urban Parangolé” project, 384–385
Urban traffic, 17, 54, 79, 120, 168, 183, 384
Urbanisation, 26, 29, 341, 381, 382
US Department for Energy, 69
US Department of Transportation, 69, 298, 355, 383
US Environmental Protection Agency, 191
US Federal Highway
Administration, 296
US National Highway Traffic Safety Administration (NHTSA), 145–146, 370
US Tech Choice study, 288
Use cases for autonomous driving
driving to hub, 213
scenarios, 211–215
time management, 215–218
User groups, 66
User interfaces, 283–285
Utilitarian approach, 250–251, 257
V-to-business application, 399
V-to-dealer communication, 25
V-to-everything communication, 375
V-to-home
application, 399
services, 318
V-to-life applications, 318
Valeo, 182
Value chains
Baidu, 338
conditions, 328, 330, 331
economics, 328, 329
Google, 334–338
redesign, 327–328
technology fusion, 330–334
Vehicle
automation, 401
connectivity, 143
digitising and design, 265–267
management, 74
manufacturers, 313
platooning, 299
surroundings, 284
throughput, 295–297
types, 81–84
Vehicle as ecosystem, 263–264
degree of autonomy, 262–263
intelligent connected vehicle, 261–262
tractor to ecosystem, 262
Vehicle detection
in autonomous vehicles, 95
challenges, 98, 100, 103–104
lidar, 95, 96

lidar, 95, 96
machine-learning algorithms, 96, 98
Radar, 95
for vehicle dynamics information, 97
Vehicle sketches and drafts, 267
Audi designers’ drafts of short-distance vehicles, 269–270
Audi designers’ sketches of long-distance vehicles, 268
Budii car concept, 272–273
driverless cars, 267–269
interview with Houchan Shoeibi, 271–272
Nissan Teatro for Dayz, 273–274
Volkswagen Sedric, 274–275
Vehicle-to-cloud communication (V-to-C communication), 129
Vehicle-to-pedestrian communication, 136
Vehicle-to-vehicle connectivity, 143
Vehicle-to-X (V-to-X), 25, 135–136, 241, 369–370 applications, 101, 147 communication, 272
Version control, 120
Video cameras, 227, 333
Vienna Convention (1968), 11, 172, 234, 246, 254, 401
Virginia Tech Transportation Institute, 278
Viruses, 142
Visions, 57
energy, 59–60
lives, 57–58
objections, 61–63
people, 60
people doing in autonomous cars, 62
preconditions, 60–61
space, 58–59
time, 58
VisLab research vehicle, 42
Visteon, 284
Visual signals, 78, 247
Visualisations of mobility hubs for Boston and Washington, 385
Volkswagen, 6, 130, 317, 332–333
e-Golf, 27
group, 198
Sedric, 274–275
Volvo Car Corporation, 45, 117, 174, 181, 316, 322
von Pentz, Markwart, 155
Vulnerability of connected vehicles, 142
Warehouse transportation, 159
Waterfall approach, 330
Waze, real-time traffic mapping app, 374–375
Wickenheiser, Othmar (Professor of Design), 266
Wilson, Joe, 145
Wissmann, Matthias, 17–18
WLAN, 154
Work and welfare
Jose Castillo statement, 364–365
prisoners of city, 366
traffic jams, 365
World Health Organization, 191, 354, 378
WWired article, 142

YouTube, 53, 227, 319, 323
YouTubers, 226
Yueting, Jia, 183

Zetsche, Dieter, 290
zFAS central processing unit, 118, 124, 125
zForce steering wheel, 285
Zimmer, John, 180
Zipcar, 344
Zurich Insurance Group, 354