To read the full version of this content please select one of the options below:

Intelligent water drops algorithm: A new optimization method for solving the multiple knapsack problem

Hamed Shah‐Hosseini (Electrical and Computer Engineering Department, Shahid Beheshti University, Tehran, Iran)

International Journal of Intelligent Computing and Cybernetics

ISSN: 1756-378X

Article publication date: 6 June 2008

Abstract

Purpose

The purpose of this paper is to test the capability of a new population‐based optimization algorithm for solving an NP‐hard problem, called “Multiple Knapsack Problem”, or MKP.

Design/methodology/approach

Here, the intelligent water drops (IWD) algorithm, which is a population‐based optimization algorithm, is modified to include a suitable local heuristic for the MKP. Then, the proposed algorithm is used to solve the MKP.

Findings

The proposed IWD algorithm for the MKP is tested by standard problems and the results demonstrate that the proposed IWD‐MKP algorithm is trustable and promising in finding the optimal or near‐optimal solutions. It is proved that the IWD algorithm has the property of the convergence in value.

Originality/value

This paper introduces the new optimization algorithm, IWD, to be used for the first time for the MKP and shows that the IWD is applicable for this NP‐hard problem. This research paves the way to modify the IWD for other optimization problems. Moreover, it opens the way to get possibly better results by modifying the proposed IWD‐MKP algorithm.

Keywords

Citation

Shah‐Hosseini, H. (2008), "Intelligent water drops algorithm: A new optimization method for solving the multiple knapsack problem", International Journal of Intelligent Computing and Cybernetics, Vol. 1 No. 2, pp. 193-212. https://doi.org/10.1108/17563780810874717

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited