To read this content please select one of the options below:

Designing and testing wearable range‐vibrotactile devices

Wai Lun Khoo (Based in the Department of Computer Science, City College of New York – CUNY, New York, USA)
Joey Knapp (Based in the Department of Computer Science, City College of New York – CUNY, New York, USA)
Franklin Palmer (Based in the Department of Computer Science, City College of New York – CUNY, New York, USA)
Tony Ro (Based in the Department of Psychology, City College of New York – CUNY, New York, USA)
Zhigang Zhu (Based in the based in the Department of Computer Science, City College of New York – CUNY, New York, USA)

Journal of Assistive Technologies

ISSN: 1754-9450

Article publication date: 14 June 2013

301

Abstract

Purpose

The purpose of this paper is to demonstrate how commercially‐off‐the‐shelf sensors and stimulators, such as infrared rangers and vibrators, can be retrofitted as a useful assistive technology in real and virtual environments.

Design/methodology/approach

The paper describes how a wearable range‐vibrotactile device is designed and tested in the real‐world setting, as well as thorough evaluations in a virtual environment for complicated navigation tasks and neuroscience studies.

Findings

In the real‐world setting, a person with normal vision who has to navigate their way around a room with their eyes closed will quickly rely on their arms and hands to explore the room. The authors’ device allows a person to “feel” their environment without touching it. Due to inherent difficulties in testing human subjects when navigating a real environment, a virtual environment affords us an opportunity to scientifically and extensively test the prototype before deploying the device in the real‐world.

Research limitations/implications

This project serves as a starting‐point for further research in benchmarking assistive technology for the visually impaired and to eventually develop a man‐machine sensorimotor model that will improve current state‐of‐the‐art technology, as well as a better understanding of neural coding in the human brain.

Social implications

Based on 2012 World Health Organization, there are 39 million blind people. This project will have a direct impact on this community.

Originality/value

The paper demonstrates a low cost design of assistive technology that has been tested and evaluated in real and virtual environments, as well as integration of sensor designs and neuroscience.

Keywords

Citation

Lun Khoo, W., Knapp, J., Palmer, F., Ro, T. and Zhu, Z. (2013), "Designing and testing wearable range‐vibrotactile devices", Journal of Assistive Technologies, Vol. 7 No. 2, pp. 102-117. https://doi.org/10.1108/17549451311328781

Publisher

:

Emerald Group Publishing Limited

Copyright © 2013, Emerald Group Publishing Limited

Related articles