To read this content please select one of the options below:

Advanced scheduling with genetic algorithms in supply networks

Anna Ławrynowicz (Warsaw School of Economics, Warsaw, Poland)

Journal of Manufacturing Technology Management

ISSN: 1741-038X

Article publication date: 26 July 2011

899

Abstract

Purpose

The purpose of this research is to improve efficiency of the traditional scheduling methods and explore a more effective approach to solving the scheduling problem in supply networks with genetic algorithms (GAs).

Design/methodology/approach

This paper develops two methods with GAs for detailed production scheduling in supply networks. The first method adopts a GA to job shop scheduling in any node of the supply network. The second method is developed for collective scheduling in an industrial cluster using a modified GA (MGA). The objective is to minimize the total makespan. The proposed method was verified on some experiments.

Findings

The suggested GAs can improve detailed production scheduling in supply networks. The results of the experiments show that the proposed MGA is a very efficient and effective algorithm. The MGA creates the manufacturing schedule for each factory and transport operation schedule very quickly.

Research limitations/implications

For future research, an expert system will be adopted as an intelligent interface between the MRPII or ERP and the MGA.

Originality/value

From the mathematical point of view, a supply network is a digraph, which has loops and therefore the proposed GAs take into account loops in supply networks. The MGA enables dividing jobs between factories. This algorithm is based on operation codes, where each chromosome is a set of four‐positions genes. This encoding method includes both manufacture operations and long transport operations.

Keywords

Citation

Ławrynowicz, A. (2011), "Advanced scheduling with genetic algorithms in supply networks", Journal of Manufacturing Technology Management, Vol. 22 No. 6, pp. 748-769. https://doi.org/10.1108/17410381111149620

Publisher

:

Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited

Related articles